基于旋转、平移和尺度不变的平稳小波图像去噪
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Image de-noise based on the stationary wavelet translation with rotation,shift and scale invariance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的离散正交小波变换对信号的起始位置比较敏感的特点,提出了具有旋转、平移和尺度不变的平稳小波变换,将图像变换到极坐标,采用方向能量函数确定图像主轴方位,并将图像主轴旋转到水平方向得到方向归一化的图像。然后通过对图像的重整和小波基的位移、伸缩、旋转,来消除位移和尺度的影响。采用基于Bayesian自适应阈值估计的方法,通过最小化Bayesian风险函数获得具有最大信噪比的图像近似最优消噪阈值,提出一种利用输入数据直接得到渐近最优阈值的图像去噪方法。实验结果表明,所提出的方法能够在去除噪声的同时很好地保留图像的边缘,是一种有效的图像去噪方法。

    Abstract:

    Since traditional discrete orthonormal wavelet transform being more sensitive to the original position of signal.In the paper,we propose a stationary wavelet transform which possess the properties of rotation,shift and scale invariance.First transforming the image to polar coordinates,and confirming the principal axis orientation to adopt orientation energy function,then rotating the principal axis of image to the level orientation to gain the unifying image in the orientation.By reforming the image and rotation,shift and invariance to the wavelet bases,thus we can eliminate the influence of shift and scale.In the paper,we use Bayesian adaptive threshold estimation to gain the approximate optimization de-noising threshold.The image possesses the most PSNR.Thus we propose a kind of method which uses the input data to gain the asymptotic optimization de-noising threshold.Finally,experimental result show that the method can better reserve the image edge and de-noise at the same time,and being a kind of valid method of image de-noising.

    参考文献
    相似文献
    引证文献
引用本文

李晋炬,马志峰,吴琼之,杜娟.基于旋转、平移和尺度不变的平稳小波图像去噪[J].激光与红外,2010,40(11):1263~1268
LI Jin-ju, MA Zhi-feng, WU Qiong-zhi, DU Juan. Image de-noise based on the stationary wavelet translation with rotation, shift and scale invariance[J]. LASER & INFRARED,2010,40(11):1263~1268

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期: