波长优选BP神经网络用于近红外光谱分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

吉林省科技发展计划国际科技合作项目(No.20080721)资助


Application of BP neural network based on wavelength optimization in near infrared spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近红外光谱分析技术在物质成分分析中的得到广泛的应用,在自主研发的滤光片型近红外仪器中应用基于波长优选的BP神经网络模型的方法。该方法是采用多元线性回归算法获取最优波长,将最优波长作为BP神经网络模型的输入,所得模型的拟合残差为8.768991×10-6,建模样品集相关系数和检验样品集相关系数分别为0.994和0.996。试验结果表明,基于波长优选的BP神经网络模型方法能够更快获得最优解,减少建模所用变量,建立稳健的定量模型。

    Abstract:

    Near Infrared Spectroscopy has been widely used in material composition analysis.In this self-designed filter NIR device,the article presents a modeling method based on BP neural network with wavelength optimization selection.First,multiple linear regression algorithm modeling is used to analyze the prepared 26 samples to obtain optimal wavelength which is then used as BP neural network model′s input.After the calculation,it shows that the fitting residual is 8.768991×10-6 and the correlation coefficients of modeling samples and testing samples are respectively 0.994 and 0.996.The experimental result indicates that the BP neural network modeling method based on wavelength optimization can gain the optimal solution more quickly,reduce the variables used in modeling and apparently improve the robustness of the quantitative analysis model,enhance the actual ability of detecting.

    参考文献
    相似文献
    引证文献
引用本文

尹慧敏,吴文福,张亚秋.波长优选BP神经网络用于近红外光谱分析[J].激光与红外,2011,41(8):871~874
YIN Hui-min, WU Wen-fu, ZHANG Ya-qiu. Application of BP neural network based on wavelength optimization in near infrared spectroscopy[J]. LASER & INFRARED,2011,41(8):871~874

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期: