多特征融合的行人检测算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Pedestrian detection algorithm using multiple features fusing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对站立行人的外观特性,提出多特征优选的行人检测算法。首先在特征提取阶段,分别利用梯度直方图,灰度共生矩阵、HSV颜色来提取行人的边缘,纹理和颜色频率特征,构成丰富的特征集。接着在分类器创建阶段,使用偏最小二乘法降维算法,优选出权重较大的特征,形成二次判别分类器。最后利用训练好的分类器,对行人进行监测。实验结果表明,本算法在FPPW=0.0001时漏检率为3%左右,检测精度高于HOG和PID算法。

    Abstract:

    A multiple features fusing algorithm is presented to detect pedestrian based on their appearance characteristics. Firstly, the edge, texture and color frequency features are extracted via HOG, Co-occurrence Matrices and HSV color in features-extracting stage, and a richer feature set is formed. Then, some important features are selected via partial least squares for dimension reduction and a quadratic discriminant analysis classifier is formed in classifier-creating stage. Lastly, the pedestrian is monitored by a well trained classifier. Experimental results show that the proposed algorithm outperforms both the HOG and PID algorithm, with a 3% miss rate at 10-4FPPW.

    参考文献
    相似文献
    引证文献
引用本文

康长青.多特征融合的行人检测算法[J].激光与红外,2013,43(9):1064~1067
KANG Chang-qing. Pedestrian detection algorithm using multiple features fusing[J]. LASER & INFRARED,2013,43(9):1064~1067

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期: