基于注意力机制的实时车辆点云检测算法
作者:
基金项目:

国家自然科学基金(No.51965008);黔科合重大专项(No.[2019]3012);贵州省优秀青年科技人才项目(No.[2017]5630)资助


Vehicle point cloud detection algorithm based on attention mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对现有激光点云目标检测效果、实时性差的问题,提出了一种基于注意力机制的实时车辆点云检测算法。本文所提出的检测算法将注意力机制算法与YOLOv3相结合,利用注意力机制对点云鸟瞰图的特征进行权重分配,以学习不同通道和空间下特征的相关性,并通过CIOU loss 和Focal loss来改进检测器的损失函数。实验结果表明基于注意力机制的车辆点云检测算法检测速度可达30帧/秒,车辆目标的平均检测精度达到了92.5 %。并且在实车数据测试中,该算法能快速准确的对一定范围内车辆进行准确识别,并且达到实时检测效果。

    Abstract:

    Aiming at the problem of poor detection effect and real-time performance of existing laser point cloud target,a real-time vehicle point cloud detection algorithm based on attention mechanism is proposed.The detection algorithm proposed in this paper combines the attention mechanism algorithm with YOLOv3,uses the attention mechanism to distribute the weight of the features of the bird′s-eye view of the point cloud,so as to learn the correlation of the features in different channels and spaces,and improves the loss function of the detector through CIOU loss and focal loss.The experimental results show that the detection speed of the vehicle point cloud detection algorithm based on the attention mechanism can reach 30 f/s,and the average detection accuracy of the vehicle target can reach 92.5 %.In the real vehicle data test,the algorithm can quickly and accurately identify vehicles in a certain range,and achieve real-time detection effect.

    参考文献
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赖坤城,赵津,刘畅,刘子豪,王玺乔.基于注意力机制的实时车辆点云检测算法[J].激光与红外,2021,51(3):285~291
LAI Kun-cheng, ZHAO Jin, LIU Chang, LIU Zi-hao, WANG Xi-qiao. Vehicle point cloud detection algorithm based on attention mechanism[J]. LASER & INFRARED,2021,51(3):285~291

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2021-03-31