变形L1正则化的高光谱图像稀疏解混
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

江西省教育厅科技项目(No.GJJ190956;No.GJJ180962;No.GJJ170992);国家自然科学基金资助项目(No.61865012;No.61662033);江西省自然科学基金项目(No.20192BAB217003);江西省重点研发计划项目(No.20202BBGL73081;No.20181ACG70022)资助


Transformed L1 regularization for hyperspectral sparse unmixing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    如何准确地刻画易于求解的稀疏正则化函数是高光谱图像稀疏解混的难点。变形L1正则化函数是一类由绝对值函数组成的双线性变换的单参数族,类似于Lpp∈0,1范数,通过调整参数a∈0,可以准确表征L0和L1之间的任意范数,并具有无偏、稀疏和Lipschitz连续性。论文首先研究变形L1正则化函数,然后提出变形L1正则化的高光谱稀疏解混变分模型,最后提出变形L1正则化高光谱稀疏解混模型的凸函数差分求解算法。通过模拟和真实的高光谱数据实验,与经典的SUnSAL算法相比,表明提出的算法能够更准确地刻画丰度系数的稀疏性,并获得更高的解混精度。

    Abstract:

    How to accurately characterize the sparse regularization function which is easy to be solved is difficult for sparse hyperspectral unmixing.Transformed L1TL1 regularization function is a one parameter family of bilinear transformations composed with the absolute value function,similar to Lp norm with p∈0,1,it represents any norms from L0 to L1 exactly through a nonnegative parameter a∈0,,and satisfies unbiasedness,sparsity and Lipschitz continuity properties.In this paper,we study TL1 regularization function and propose sparse hyperspectral unmixing model with TL1 regularization.Meanwhile,a difference of convex algorithm for TL1 in computing TL1 regularized sparse unmixing problems is presented.Experimental results on both simulated and real hyperspectral data demonstrate that the TL1 regularization function describes the sparsity of endmembers more accurately and the proposed algorithm is much more accurate than SUnSAL algorithm.

    参考文献
    相似文献
    引证文献
引用本文

李璠,吴朝明,张绍泉,胡蕾,邓承志.变形L1正则化的高光谱图像稀疏解混[J].激光与红外,2021,51(4):515~522
LI Fan, WU Zhao-ming, ZHANG Shao-quan, HU Lei, DENG Cheng-zhi. Transformed L1 regularization for hyperspectral sparse unmixing[J]. LASER & INFRARED,2021,51(4):515~522

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-11