基于卷积神经网络的末敏弹复合探测信号识别方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

阵列式水下多脉冲爆炸能量转换机制及其声学效应项目(No.11972197)资助。


Recognition method of compound detection signal of terminalsensitive sub ammunition based on convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了进一步提升末敏弹的目标识别性能,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的复合探测信号识别方法。首先针对毫米波辐射计、激光测距雷达和红外敏感器的复合探测信号特点,提出了3种构造输入样本的方法;然后根据不同的信息融合方式,提出了3种基本网络架构,分别构建了单通道、多通道CNN模型对输入信号进行特征提取和分类;最后通过高塔试验数据对模型进行训练和评估。测试结果表明,基于样本构造方案2和网络结构3的识别方法表现最佳,测试准确率达到了97.26,所提样本构造方法和识别方法能够有效提取复合探测信号的特征,具有较高的识别精度。

    Abstract:

    In order to improve the target recognition performance of terminal sensitive sub ammunition,a compound detection signal recognition method based on convolutional neural network (CNN) is proposed.First,according to the characteristics of the composite detection signal of millimeter wave radiometer,laser ranging radar and infrared sensor,three methods of constructing input samples are proposed;then,three basic network architectures are proposed according to different information fusion methods,and single channel and multi channel CNN models are constructed to extract and classify the input signals;finally,these models are trained and evaluated through the high tower experiment data.The experiment results show that the recognition method based on sample construction scheme 2 and network structure 3 performs best,and the test accuracy rate reaches 97.26%.The proposed sample construction method and recognition method can effectively extract the characteristics of the composite detection signal,and have high recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

闫广利,郭锐,刘荣忠,武军安.基于卷积神经网络的末敏弹复合探测信号识别方法[J].激光与红外,2022,52(4):564~570
YAN Guang-li, GUO Rui, LIU Rong-zhong, WU Jun-an. Recognition method of compound detection signal of terminalsensitive sub ammunition based on convolutional neural network[J]. LASER & INFRARED,2022,52(4):564~570

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2021-08-31
  • 录用日期:
  • 在线发布日期: 2022-04-19
  • 出版日期: