基于激光测距的微型机械臂关节控制模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(No.51276019)资助。


Joint control model of micro manipulator based on laser ranging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了更加深入探究并提升机械臂关节控制效果,提出一种基于激光测距的微型机械臂关节控制模型,通过激光测距技术对微型机械臂周边环境进行感知,同时进行数据点扫描,将全部数据点集进行直线分割以及拟合等相关操作,获取二维环境地图。在上述基础上,通过坐标变换矩阵获取微型机械臂的正运动学模型,利用正运动学模型得到机械臂逆运动学模型。将获取的动力学模型转换为仿射非线性系统的形式,利用输入输出反馈线性化方法选取合适的状态变换和反馈变换,通过滑膜控制方法构建微型机械臂关节控制模型,采用模型进行关节控制。仿真实验结果表明,所提模型可以获取理想的微型机械臂关节控制结果。

    Abstract:

    In order to further explore and improve the joint control effect of manipulator,a joint control model of micro manipulator based on laser ranging is proposed,which senses the surrounding environment of the micro manipulator through the laser ranging technology and scans the data points at the same time,all data point sets are subjected to line segmentation,fitting and other related operations to obtain a two dimensional environment map. Based on the above,the forward kinematics model of the micro manipulator is obtained through the coordinate transformation matrix,and the inverse kinematics model of the manipulator is obtained by using the forward kinematics model. The obtained dynamic model is transformed into the form of affine nonlinear system,the appropriate state transformation and feedback transformation are selected by the input output feedback linearization method,the joint control model of micro manipulator is constructed by the synovial control method,and the model is used for joint control. The simulation results show that the proposed model can obtain ideal joint control results of micro manipulator.

    参考文献
    相似文献
    引证文献
引用本文

马建民,段俊法.基于激光测距的微型机械臂关节控制模型[J].激光与红外,2022,52(9):1354~1359
MA Jian-min, DUAN Jun-fa. Joint control model of micro manipulator based on laser ranging[J]. LASER & INFRARED,2022,52(9):1354~1359

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2022-03-04
  • 录用日期:
  • 在线发布日期: 2022-09-23
  • 出版日期: