基于Deeplabv3+与Otsu模型的输电线电晕放电紫外图像分割方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

南方电网重点科技项目“智能装备检测与集成研发技术研究”项目(No.CGYKJXM20210307)资助。


UV image segmentation of power line corona discharge based on Deeplabv3+ and Otsu model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电晕放电严重威胁输电线路的安全运行,如何提高其放电区域识别分割准确率是一个亟待解决的问题。而因环境影响及设备性能限制,夜间型紫外成像仪常出现成像不清晰、放电区域对比度不明显等特征,导致难以有效实现电晕放电区域的分割,从而影响放电故障的判定。为此提出了基于Deeplabv3+与Otsu模型的输电线电晕放电紫外图像精确分割方法,首先构建基于Deeplabv3+语义分割模型,对放电区域进行类别分割得到大致区域;然后,利用改进Otsu算法对语义分割结果中放电目标区域方差自适应加权,使得分割阈值近似理想阈值,从而实现电晕放电区域的精确分割。实验结果表明,本文提出的分割方法在测试集中平均像素精度为9397%,平均交并比为 9085%,分割性能良好。

    Abstract:

    Corona discharge seriously threatens the safe operation of transmission lines,and how to improve the segmentation accuracy of discharge area identification is an urgent problem.Night type ultraviolet imager is often due to the environmental impact and equipment limitations,the discharge image taken by it is not clear,the contrast between the discharge area and the background is not obvious,resulting in the effective realization of the corona discharge area segmentation,for which a new UV imaging technology based on the transmission line corona discharge accurate segmentation method is proposed.Firstly,a Deeplabv3+ semantic segmentation model is constructed to segment the discharge region into categories to obtain the approximate region; then,the improved Otsu algorithm is used to adaptively weight the variance of the discharge target region in the semantic segmentation results to make the segmentation threshold approximate the ideal threshold,so as to achieve the accurate segmentation of the corona discharge region.The experimental results show that the mean pixel accuracy of the segmentation method proposed in this paper is 93.97% in the test set,and the mean intersection over union is 90.85%,with good segmentation performance.

    参考文献
    相似文献
    引证文献
引用本文

田晨,许志浩,李强,宋云海,康兵,丁贵立,王宗耀.基于Deeplabv3+与Otsu模型的输电线电晕放电紫外图像分割方法[J].激光与红外,2023,53(1):153~160
TIAN Chen, XU Zhi-hao, LI Qiang, SONG Yun-hai, KANG Bing, DING Gui-li, WANG Zong-yao. UV image segmentation of power line corona discharge based on Deeplabv3+ and Otsu model[J]. LASER & INFRARED,2023,53(1):153~160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2022-10-06
  • 录用日期:
  • 在线发布日期: 2023-02-02
  • 出版日期: