面向铁路场景的大规模点云高效去噪方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国铁道科学研究院集团有限公司科技开发基金重点项目(No.2021YJ310)资助。


An efficient denoising method for large scale point cloud in railway scene
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用车载激光雷达获取铁路沿线环境信息对于保障行车安全具有重要意义。但是激光雷达采集到的点云数据受设备及环境因素影响,会产生大量的噪声干扰,这些噪声严重影响后续的感知和监测任务。为此,本文提出了一种面向铁路场景的大规模点云高效去噪方法。该方法提出了一种新颖的网格投影策略,对大规模铁路点云数据进行高效的降维降采样处理。然后,设计了基于GPU的改进聚类加速算法,快速识别离群的噪声数据。最后综合设计多策略融合方法,有效地去除噪声数据。所提方法充分利用铁路场景前向运动的特点,对点云数据进行基于网格化的时空压缩,同时利用GPU加速聚类算法的矩阵运算,实现了实时高效的铁路场景大规模点云去噪算法。实验结果表明,所提方法不仅能够提高去噪的性能,而且处理效率得到了极大提升。

    Abstract:

    It is of great significance to obtain environmental information along railway lines using vehicle mounted LiDAR.However,the point cloud data collected by LiDAR is affected by equipment and environmental factors,leading to a lot of noise interference.These noises seriously affect the subsequent perception and monitoring tasks.To this end,an efficient denoising method for large scale point cloud of railway scene is proposed in this paper and a novel grid projection strategy is designed to efficiently reduce dimension and sampling for large scale railway point cloud data.Then,an improved clustering algorithm based on GPU is designed to quickly identify and separate outlier noise data.Finally,a multi strategy fusion method is designed to remove noise data effectively.The proposed method makes full use of the characteristics of forward movement of railway scenes to perform grid based spatial temporal compression on point cloud data,and further uses the matrix operation of GPU accelerated clustering algorithm to realize real time and efficient large scale point cloud denoising algorithm of railway scenes.The experimental results show that the proposed method not only improves the performance of denoising,but also greatly enhances the processing efficiency.

    参考文献
    相似文献
    引证文献
引用本文

吴嘉诚,孙淑杰,刘俊博,田媚,黄雅平.面向铁路场景的大规模点云高效去噪方法[J].激光与红外,2023,53(6):830~837
WU Jia-cheng, SUN Shu-jie, LIU Jun-bo, TIAN Mei, HUANG Ya-ping. An efficient denoising method for large scale point cloud in railway scene[J]. LASER & INFRARED,2023,53(6):830~837

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2022-09-09
  • 录用日期:
  • 在线发布日期: 2023-06-15
  • 出版日期: