一种基于YOLOv5s的红外图像目标检测改进算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


An improved method of infrared image target detection based on YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    受热红外成像方式限制,交通场景下红外图像存在对比度低、目标尺度和姿态的多样性以及目标之间的相互遮挡问题,从而造成检测精度下降,部分目标出现漏检、误检的情况。本文在YOLOv5s的基础上提出一种改进算法:在数据处理方面,使用AHE算法对训练集图像进行部分数据增强;在模型改进方面,通过引入跨域迁移学习策略、插入通道注意力机制SENet、改进损失函数GIoU为α-CIoU对YOLOv5s进行改进。并通过消融实验的方式,在自制数据集上对夜间道路环境下的电动自行车驾驶行为进行检测。实验结果表明,改进后的算法对单人驾驶电动自行车行为检测的平均精度达到了959,比YOLOv5s的检测精度提高了31;对载人驾驶电动自行车行为检测的平均精度达到了884,比YOLOv5s的检测精度提高了95;总类别检测的平均精度达到了922,比YOLOv5s的检测精度提高了64,有效降低了红外目标漏检、误检的概率。

    Abstract:

    Due to the limitations of heated infrared imaging mode,infrared images in traffic scenes suffer from low contrast,diversity of target dimensions and postures,and mutual occlusion between targets,which leads to the decrease of detection accuracy and the false detection of some targets.In this paper,an improved algorithm based on YOLOv5s is proposed in terms of data processing,the AHE algorithm is used for partial data enhancement of the training set images;in terms of model improvement,YOLOv5s is improved by introducing a cross domain transfer learning strategy,inserting channel attention mechanism SENet and improving the loss function GIoU to α CIoU.By means of ablation experiments,the driving behavior of electric bicycle in night road environment is detected on self made data set.The experimental results show that the improved algorithm achieves an average accuracy of 95.9% for single person driving electric bicycle behavior detection,which is 3.1% higher than that of YOLOv5s;an average accuracy of 88.4% for manned electric bicycles behavior detection,which is 9.5% higher than the detection accuracy of YOLOv5s;and an average accuracy of 92.2% for total category detection,which is 6.4% higher than the detection accuracy of YOLOv5s,effectively reducing the probability of missing and false detection of infrared targets.

    参考文献
    相似文献
    引证文献
引用本文

李晓佩,张寅宝,李严培,姚芸星.一种基于YOLOv5s的红外图像目标检测改进算法[J].激光与红外,2023,53(7):1043~1051
LI Xiao-pei, ZHANG Yin-bao, LI Yan-pei, YAO Yun-xing. An improved method of infrared image target detection based on YOLOv5s[J]. LASER & INFRARED,2023,53(7):1043~1051

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-14
  • 出版日期: