地面红外目标数据联合增强方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Joint data augmentation method for ground infrared target
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对地面非合作特种车辆目标红外数据获取难度大、成本高,深度学习网络小样本数据条件下易于出现过拟合、网络泛化能力差等问题,本文以地面车辆红外数据为对象,提出了一种基于几何-特征空间变换的数据增强方法。首先,通过高清红外设备构建了原始地面车辆红外数据集;在此基础上,利用金字塔生成对抗网络(SinGAN)的空间特征重构机制,联合几何空间变换,对原始车辆红外数据进行了增广,并建立了地面目标红外数据集Infrared VOC;最后,利用几种不同深度学习目标检测模型对增强后的红外数据集进行测试,验证了几何-特征空间联合变换方法数据增强的有效性,为地面非合作特种车辆红外数据增强提供了新方法。

    Abstract:

    In order to deal with the difficulty and excessive cost in acquiring infrared data of ground non cooperative special vehicle targets,and solve the problems of over fitting and poor generalization ability for small sample data sets,a data augmented method based on geometric feature space transformation is proposed for ground vehicle infrared data.Firstly,the original ground vehicle infrared data set is constructed by high definition infrared equipment.Then,in conjunction with the geometric feature space transformation method,the reconstruction mechanism of the SinGAN neural network is leveraged to augment the infrared data sets and build the Infrared VOC data sets.Finally,a variety of the target detection models is employed to validate the performance of the augmented infrared data sets.The effectiveness of the geometric feature space transformation for data augmentation is verified by several benchmark test cases,which provides a new method for ground non cooperative special vehicle infrared data augmentation.

    参考文献
    相似文献
    引证文献
引用本文

赵晓枫,夏玉婷,徐叶斌,牛家辉,张文文.地面红外目标数据联合增强方法[J].激光与红外,2023,53(7):1117~1124
ZHAO Xiao-feng, XIA Yu-ting, XU Ye-bin, NIU Jia-hui, ZHANG Wen-wen. Joint data augmentation method for ground infrared target[J]. LASER & INFRARED,2023,53(7):1117~1124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2022-11-24
  • 录用日期:
  • 在线发布日期: 2023-07-14
  • 出版日期: