一种基于深度和局部特征的分布式光电图像配准方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A distributed electro optical image registration method based on deep and local features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对分布式光电成像系统采集的红外和可见光图像在配准时易受噪声影响,配准精度不高问题,提出一种基于卷积神经网络深度特征和RIFT局部特征的图像配准算法。首先基于改进的AVIRnet提取待配准红外和可见光图像的卷积深度特征,利用深度特征进行初匹配,得到初步的空间关系;然后在重叠图像区域内提取RIFT特征点;最后对局部特征点进行修正,得到最终的匹配点对,估算出精确的变换矩阵。实验结果表明:本文方法通过深度特征和局部特征两次匹配,对非线性辐射差异具有不变性,满足了分布式光电红外和可见光图像配准的精度要求。

    Abstract:

    To address the problems that the infrared and visible images collected by distributed electro opticalimage system are susceptible to noise and poor alignment accuracy,an image registration algorithm based on convolutional neural network features and RIFT local features is proposed in this paper.Firstly,the convolution deep features of infrared and visible images to be registered are extracted based on improved AVIRnet,and the initial feature point pairs are obtained by deep features rough match.Secondly,the RIFT feature points are abstracted from overlap image area.Then,the local feature points are revised to obtain the final matching points pairs,and the accurate transformation matrix is estimated.The experimentresult indicated that by the two step registrations on deep and local features,the proposed method is invariant to nonlinear radiation difference and essentially satisfied the precise requirement of distributed electro optical infrared and visible image registration.

    参考文献
    相似文献
    引证文献
引用本文

陈晓露,刘奕.一种基于深度和局部特征的分布式光电图像配准方法[J].激光与红外,2023,53(7):1125~1130
CHEN Xiao-lu, LIU Yi. A distributed electro optical image registration method based on deep and local features[J]. LASER & INFRARED,2023,53(7):1125~1130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-14
  • 出版日期: