固态激光雷达输电线路实时建模及压缩技术
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家电网有限公司低功耗固态激光传感器研究及在输电线路在线监测中的应用科技项目(No.5219622000GV)资助。


Real time modeling and compression technologyof solid state LiDAR transmission line
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输电线路的三维重建是电网巡检的重要任务之一。为实现电路巡检自动化,提出了一种基于固态激光雷达的输电线路实时三维重建及数据压缩技术。首先,针对固态激光雷达的特点对经典激光SLAM框架进行改进,优化其特征提取过程并加入了运动补偿,使用改进的算法对输电线路进行实时建模;然后,使用加入权重因子改进的模糊C均值聚类方法对点云模型进行降噪滤波,去除离群点及噪点;最后,为了降低大型点云数据的储存及传输开销,设计基于时空编码的方法对输电线路模型进行压缩。实验结果表明,该方法可以实现输电线路场景的高精度实时建模,压缩后的模型可以满足储存及传输要求。

    Abstract:

    The three dimensional reconstruction of transmission lines is one of the important tasks of power grid inspection.In this paper,a real time 3D reconstruction and data compression technology for transmission lines based on solid state LiDAR is proposed to automate circuit inspection.Firstly,the classic laser SLAM framework is improved according to the characteristics of solid state LiDAR by optimizing its feature extraction process and adding motion compensation,and the improved algorithm is used to model the transmission line in real time.Then,the improved fuzzy C means clustering method with weight factor is used to denoise the point cloud model to remove outliers and noises.Finally,in order to reduce the storage and transmission costs of large point cloud data,a time space coding method is designed to compress the transmission line model.The experimental results show that this method can achieve high precision real time modeling of transmission line scenes,and the compressed model can meet the storage and transmission requirements.

    参考文献
    相似文献
    引证文献
引用本文

李继辉,廖云杰,邬剑,王鸿飞,刘玮,杨生兰.固态激光雷达输电线路实时建模及压缩技术[J].激光与红外,2023,53(9):1339~1343
LI Ji-hui, LIAO Yun-jie WU Jian, WANG Hong-fei, LIU Wei, YANG Sheng-lan. Real time modeling and compression technologyof solid state LiDAR transmission line[J]. LASER & INFRARED,2023,53(9):1339~1343

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-18
  • 出版日期: