基于群稀疏空间光谱总变分的高光谱混合噪声图像恢复
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技攻关项目(No.2018YFB1403303);辽宁省基础研究项目(No.LJ2020JCL012)资助。


Hyperspectral mixed noise image restoration basedon group sparse spatial spectral total variation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高光谱图像(HSI)在采集的过程中,由于受到环境和传感器的影响,图像会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。而一些现有的张量模型,在去除含有条带和死线的混合噪声时,并不能取得很好的效果。为此,提出了一种基于群稀疏空间光谱总变分的高光谱混合噪声图像恢复算法(FRTCSSTV);为了避免过度平滑,该算法利用群稀疏空间光谱全变分正则化来增强空间谱维的稀疏性,同时为了保持HSI原有的结构,采用直接对张量纤维秩进行约束的方法来表示HSI的全局低秩。在模拟和真实的高光谱图像实验中,与其他模型相比,FRTCSSTV方法在去除含有条带和死线噪声的混合噪声时具有更好的性能。

    Abstract:

    Hyperspectral images (HSI) are contaminated with a large amount of mixed noise during acquisition due to the environmental and sensor influences,which can affect the performance of the subsequent application of remote sensing image.Therefore,recovering clean HSI from mixed noise has become an important pre processing process.However,some existing tensor models cannot achieve good results in removing the mixed noise containing bands and deadlines.To this end,a hyperspectral mixed noise image restoration algorithm (FRTCSSTV) based on group sparse spatial spectral total variation is proposed.In order to avoid excessive smoothing,group sparse spatial spectral total variation regularization is used to enhance the sparsity of spatial spectral dimension.At the same time,to maintain the original structure of HSI,the global low rank of HSI is expressed by directly constraining the rank of tensor fibers.In both simulated and real hyperspectral image experiments,the FRTCSSTV method has better performance in removing mixed noise containing stripe and dead line noise compared to other models.

    参考文献
    相似文献
    引证文献
引用本文

徐光宪,王泽民,马飞.基于群稀疏空间光谱总变分的高光谱混合噪声图像恢复[J].激光与红外,2023,53(9):1434~1440
XU Guang-xian, WANG Ze-min, MA Fei. Hyperspectral mixed noise image restoration basedon group sparse spatial spectral total variation[J]. LASER & INFRARED,2023,53(9):1434~1440

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-18
  • 出版日期: