基于注意力机制的语义增强损失函数与全景分割
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省自然科学基金项目(No.2023JJ0185);湖南省教育厅科学研究重点项目(No.22A0640)资助。


Attention based semantic enhancement lossfunction and panoptic segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    全景分割是计算机视觉中重要的研究方向。考虑到不同应用场景对语义分割精度的要求不同,本文提出一种基于注意力机制的语义增强损失函数和全景分割方法。首先将语义类别按照重要程度分组,加入注意力机制来对不同语义信息进行区分,并通过对损失权重的设计有效抑制了分类失衡问题;其次设计一种全景分割网络,利用MaskR CNN网络作为实例分割子分支并加入FPN结构作为语义分割基准,提高了所需物体种类的分割精度;最后通过设计重叠结果剔除规则避免了网络结构中的实例和语义分割分支输出的重叠问题。通过对COCO数据集的对比实验表明,本文提出的语义增强损失函数有效提高了优先级较高语义类别的分割效果,为不同应用场景的全景分割提供了更加高质量的语义信息。

    Abstract:

    Panoramic segmentation is an important research direction in computer vision.Considering that different application scenarios have different requirements for semantic segmentation accuracy,a semantic enhancement loss function and panoramic segmentation method based on attention mechanism is proposed in this paper.Firstly,the semantic categories are grouped according to their importance,and the attention mechanism is added to distinguish different semantic information,and the classification imbalance is effectively suppressed through the design of loss weight.Secondly,a panoramic segmentation network is designed using MaskR CNN network as the instance segmentation sub branch and adding FPN structure as the semantic segmentation benchmark to improve the segmentation accuracy of the required object types.Finally,the overlapping problem of instance and semantic segmentation branch output in network structure is avoided by designing overlapping result elimination rules.The comparative experiments on COCO data sets show that the semantic enhancement loss function proposed in this paper effectively improves the segmentation effect of semantic categories with higher priority,and provides more high quality semantic information for panoramic segmentation of different application scenarios.

    参考文献
    相似文献
    引证文献
引用本文

郑立冬,滕书华,谭志国,元志安,马燕新.基于注意力机制的语义增强损失函数与全景分割[J].激光与红外,2023,53(9):1449~1456
ZHENG Li-dong, TENG Shu-hua, TAN Zhi-guo, YUAN Zhi-an, MA Yan-xin. Attention based semantic enhancement lossfunction and panoptic segmentation[J]. LASER & INFRARED,2023,53(9):1449~1456

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-18
  • 出版日期: