远距离探测条件下红外序列中弱特征目标检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(No.62001478);国防科技大学自主创新科学基金项目(No.22-ZZCX-042)资助。


Weak feature target detection in infraredsequence under remote imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    远距离探测情况下红外目标无纹理特征、易受噪声和杂波干扰,属于弱特征目标,检测难度大。将红外序列中的多尺度目标检测视为图像中的逐像素分割问题,更好适应复杂环境下的小尺度目标;提出了基于注意力全卷积的弱特征目标分割方法,通过构建时域显著图,将源自不同相机的图像在同一空间进行表征,提高模型的泛化能力和收敛速度;通过注意力机制自适应学习双模态多层次信息,强化对目标区域的特征学习能力。利用实测数据和仿真数据对检测方法在不同条件下的性能进行了对比分析,实验结果表明,所提方法能够有效提升多尺度弱特征目标检测性能。

    Abstract:

    Infrared targets have no texture featurein the case of remote imaging,and are susceptible to noise and clutter.It is difficult to detect such weak feature targets.An attention based full convolutional neural network is proposed,and the multiscale target detection is regarded as a pixel wise image segmentation problem to adapt small target extraction in complex backgrounds.The time domain saliency map is constructed,and the images generated by different cameras can be projected into the same representational space.It can improve the generalization ability of the network model.The attentional mechanism is used to learn bimodal and multi level information,and to adaptively enhance the learning ability around targets.The performance comparison under different conditions is implemented based on real data and simulation data.The experimental results show that the proposed method can effectively improve detection performance for multiscale and weak feaure targets.Meanwhile,the neural network has quicker convergent rate.

    参考文献
    相似文献
    引证文献
引用本文

李淼,胡铭原,樊建鹏,林再平,高金艳,安玮.远距离探测条件下红外序列中弱特征目标检测[J].激光与红外,2023,53(11):1702~1711
LI Miao, HU Ming-yuan, FAN Jian-peng, LIN Zai-ping, GAO Jin-yan, AN Wei. Weak feature target detection in infraredsequence under remote imaging[J]. LASER & INFRARED,2023,53(11):1702~1711

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-15
  • 出版日期: