基于光斑轮廓特征的目标快速识别算法研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

吉林省科技发展计划项目(No.20230201039GX)资助。


Research on fast target recognition algorithm based on spot contour feature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大视场的视觉着陆引导系统在引导无人机自主着陆过程中,需要快速检测出安装在无人机上的合作目标。该合作目标在图像上是以光斑形式存在,因此为了满足系统的实时性要求,本文提出了基于轮廓特征的快速检测光斑算法。该算法是根据光斑在图像中的特征,采用了目标裁剪方法,将原始图像中的光斑部分裁剪出来,从而降低算法运算量;再通过图像预处理,消除背景的无关信息与噪声干扰,增强光斑的清晰度;最后利用最小二乘算法进行椭圆拟合定位出光斑的中心位置。将本实验算法与其他光斑检测算法进行实验对比,从而验证系统的实时性。结果表明:利用本文算法可以在保证精度的同时将运行时间缩减到36ms。

    Abstract:

    The large field visual landing guidance system needs to quickly detect the cooperative targets mounted on the UAV during the autonomous landing of the UAV.The cooperative target exists in the form of light spots on the image,so in order to meet the real time requirements of the system,a fast spot detection algorithm based on contour features is proposed in this paper.Firstly,according to the characteristics of light spots in the image,the target clipping method is used to extract the light spots in the original image,so as to reduce the amount of computation.Then,through the image preprocessing,the irrelevant information and noise interference in the background are eliminated to enhance the clarity of the spot.Finally,the least square algorithm is used to locate the center of the light spot by ellipse fitting.The experimental algorithm is compared with other spot detection algorithms so as to verify the real time performance of the system.The results show that the proposed algorithm can reduce the running time to 36ms while ensuring the accuracy.

    参考文献
    相似文献
    引证文献
引用本文

谢忠旭,王志乾,沈铖武,刘旭,孙浩洋,郑博文,成顺.基于光斑轮廓特征的目标快速识别算法研究[J].激光与红外,2024,54(2):289~294
XIE Zhong-xu, WANG Zhi-qian, SHEN Cheng-wu, LIU Xu, SUN Hao-yang, ZHENG Bo-wen, CHENG Shun. Research on fast target recognition algorithm based on spot contour feature[J]. LASER & INFRARED,2024,54(2):289~294

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-01
  • 出版日期: