基于YOLOv5s的轻量化红外图像行人目标检测研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(No.62061003);四川省科技计划重点研发项目(No.2021YFG0192);校级大学生新创业项目(No.S202210624201)资助。


Research on pedestrian target detection in lightweight infrared images based on YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于红外图像的行人识别是现代安防系统的重要组成部分。在计算资源受限场景,由于红外行人检测算法中模型尺寸的影响,检测精度与部署难度往往难以平衡。针对此问题,本文提出了一种基于YOLOv5s的轻量化目标检测算法:首先引入MobileNetv3轻量化特征提取网络,并使用深度可分离卷积减小模型尺寸,使其更易部署至CPU设备;其次,将最近邻插值上采样方式替换为CARAFE(Content Aware ReAssembly of FEatures),明显提升了图像重建效果;最后使用EIOU Loss作为边界框损失函数改善模型回归性能。本文在采样后的LLüIP红外行人图像数据集上进行了测试:对于红外图像下的行人目标,本文在保持高检测精度(AP=954)的同时,模型大小减少806,参数量减少828;在使用CPU平台进行推理时,推理速度提升433,且检测多尺度目标的性能有所提升。以上两方面结果验证了算法的有效性。

    Abstract:

    Pedestrian recognition based on infrared images is an important component of modern security systems.In scenarios with limited computing resources,it is often difficult to balance the detection accuracy and deployment difficulty due to the influence of model size in infrared pedestrian detection algorithms.In response to this issue,a lightweight object detection algorithm based on YOLOv5s is proposed in this paper.Firstly,the MobileNetv3 lightweight feature extraction network is introduced and deep separable convolution is used to reduce the model size,making it easier to deploy to CPU devices.Secondly,the nearest neighbor interpolation upsampling method is replaced with CARAFE(Content Aware ReAssembly of FEatures)which significantly improves the image reconstruction effect.Finally,EIOU Loss is used as the loss function of the bounding box to improve the regression performance of the model.Additionally,tests are conducted on the sampled LLüIP infrared pedestrian image dataset and the results show that for pedestrian targets in infrared images,the model size is reduced by 80.6% and the number of parameters is reduced by 82.8% while maintaining a high detection accuracy(AP=95.4%);and the inference speed is improved by 43.3% when using a CPU platform for inference,and the performance of detecting multi scale targets is improved.The above two results validate the effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

胡焱,赵宇航,胡皓冰,巩银,孙寰宇.基于YOLOv5s的轻量化红外图像行人目标检测研究[J].激光与红外,2024,54(2):295~301
HU Yan, ZHAO Yu-hang, HU Hao-bing, GONG Yin, SUN Huan-yu. Research on pedestrian target detection in lightweight infrared images based on YOLOv5s[J]. LASER & INFRARED,2024,54(2):295~301

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-01
  • 出版日期: