结合WGAN GP与CNN SVM的滚动轴承故障红外诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Infrared diagnosis of rolling bearing faults based onWGAN GP and CNN SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实际工程应用中由于滚动轴承故障状态出现的时间很短而导致数据集不平衡难以采用深度学习算法进行故障诊断的问题,提出了一种基于Wasserstein距离的梯度惩罚生成对抗网络(WGAN GP)和基于支持向量机分类的卷积神经网络(CNN SVM)相结合的滚动轴承故障红外诊断方法。从红外热像图中构建不平衡数据集,通过采用WGAN GP对不平衡数据扩充以达到数据集均衡,之后将CNN SVM模型应用于数据集,提取样本深度特征完成故障分类。实验表明,WGAN GP与CNN SVM相结合的模型在不平衡数据集下表现良好,相较于其他模型有更好的故障诊断能力,并且在故障分类阶段的用时可减少1689以上。

    Abstract:

    In practical engineering applications,the short duration of rolling bearing fault states leads to imbalanced datasets,making it difficult to use deep learning algorithms for fault diagnosis. In this paper,a n infrared diagnosis method for rolling bearing faults based on the combination of the Wasserstein distance based gradient penalty generative adversarial network (WGAN GP) and a support vector machine based convolutional neural network (CNN SVM) is proposed. The imbalanced dataset is constructed from infrared thermal images,and WGAN GP is used to augment the imbalanced data to achieve dataset balance,after which the CNN SVM model is then applied to the dataset to extract deep features and complete fault classification. The experimental results show that the model combining WGAN GP with CNN SVM performs well under imbalanced datasets,with better fault diagnosis capability compared to other models,and reduces the time spent in the fault classification stage by more than 16.89%.

    参考文献
    相似文献
    引证文献
引用本文

周建民,沈熙闻,刘露露.结合WGAN GP与CNN SVM的滚动轴承故障红外诊断[J].激光与红外,2024,54(3):416~422
ZHOU Jian-min, SHEN Xi-wen, LIU Lu-lu. Infrared diagnosis of rolling bearing faults based onWGAN GP and CNN SVM[J]. LASER & INFRARED,2024,54(3):416~422

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2023-06-13
  • 录用日期:
  • 在线发布日期: 2024-03-22
  • 出版日期: