基于全局双线性注意力的红外视频行为识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(No.62272426;No.62106238);山西省科技重大专项计划“揭榜挂帅”项目(No.202201150401021);山西省科技成果转化引导专项项目(No.202104021301055);山西省回国留学人员科研资助项目(No.2020-113);山西省基础研究计划(No.202203021222027)资助。


Behavior recognition in infrared video based on global bilinear attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对红外视频缺少纹理细节特征以致在人体行为识别中难以兼顾计算复杂度与识别准确率的问题,提出一种基于全局双线性注意力的红外视频行为识别方法。为高效计算红外视频中的人体行为,设计基于两级检测网络的关节点提取模块来获得人体关节点信息,创新性地将所形成的关节点三维热图作为红外视频人体行为识别网络的输入特征;为了在轻量化计算的基础上进一步提升识别准确率,提出一种全局双线性注意力的三维卷积网络,从空间和通道两个维度提升注意力的建模能力,捕获全局结构信息。在InfAR和IITR IAR数据集上的实验结果表明,该方法在红外视频行为识别中的有效性。

    Abstract:

    To address the problem that infrared video lacks texture detail features which is difficult to balance the computational complexity and recognition accuracy in human behavior recognition,a global bilinear attention based behavior recognition method for infrared video is proposed in this paper. Firstly,in order to efficiently compute human behavior in infrared video,a joint extraction module based on a two stage detection network is designed to obtain human joint point information,and the resulting 3D heat map of joints is innovatively used as an input feature for the human behaviour recognition network in infrared video. Moreover,to further improve the recognition accuracy on the basis of lightweight computation,a global bilinear attention based 3D convolutional network is proposed to enhance the attention from both spatial and channel dimensions modeling capability to capture global structural information. The experimental results on the InfAR and IITR IAR datasets demonstrate the effectiveness of the method in infrared video behavior recognition.

    参考文献
    相似文献
    引证文献
引用本文

欧阳楠楠,况立群,谢剑斌,韩慧妍,曹亚明,王飞.基于全局双线性注意力的红外视频行为识别[J].激光与红外,2024,54(3):431~439
OUYANG Nan-nan, KUANG Li-qun, XIE Jian-bin, HAN Hui-yan, CAO Ya-ming, WANG Fei. Behavior recognition in infrared video based on global bilinear attention[J]. LASER & INFRARED,2024,54(3):431~439

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2023-06-27
  • 录用日期:
  • 在线发布日期: 2024-03-22
  • 出版日期: