一种复杂地形场景点云的WOA CSF自适应性滤波方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(No.52074010);安徽省优秀青年科学基金项目(No.2108085Y20)资助。


A WOA CSF adaptive filtering method for complex terrain scene point clouds
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决布料模拟滤波算法(CSF)自适应性不高的问题,提出了一种基于鲸鱼优化算法(WOA)和自适应参数调整的改进CSF算法(WOA CSF)。本文首先构造以误分类点云误差率最小为标准的适应度评价函数,然后采用WOA算法对CSF算法的四个参数进行自适应寻优,构建了WOA CSF滤波算法,最后开展了WOA CSF算法与CSF算法滤波实验的对比研究。实验结果表明:WOA CSF算法在城市、乡镇、村庄和山区等四种复杂环境下平均Kappa系数从6833提升到8154,平均总误差率从1054下降到662,平均I类误差率从2587下降到677,在复杂场景下较好地滤除非地面点的同时,又极大程度上保留了地形特征。

    Abstract:

    In order to solve the problem of poor adaptivity of the cloth simulation filtering(CSF)algorithm,an improved CSF algorithm(WOA CSF)based on the whale optimization algorithm(WOA)and adaptive parameter tuning is proposed.In this paper,a fitness evaluation function based on the minimum error rate of misclassified point clouds as the criterion is constructed,then the WOA algorithm is used to adaptively optimize the four parameters of the CSF algorithm,and the WOA CSF filtering algorithm is constructed,and finally the comparative study of the filtering experiments of the WOA CSF algorithm and the CSF algorithm is carried out.The experimental results show that the average Kappa coefficient of WOA CSF algorithm in four complex environments such as cities,towns,villages and mountainous areas improves from 68.33% to 81.54%,the average total error rate decreases from 10.54% to 6.62%,and the average class I error rate decreases from 25.87% to 6.77%.In the complex scene,the non ground points are well filtered while the terrain features are retained to a great extent.

    参考文献
    相似文献
    引证文献
引用本文

戚鑫鑫,王磊,储栋,池深深.一种复杂地形场景点云的WOA CSF自适应性滤波方法[J].激光与红外,2024,54(5):725~733
QI Xin-xin, WANG Lei, CHU Dong, CHI Shen-shen. A WOA CSF adaptive filtering method for complex terrain scene point clouds[J]. LASER & INFRARED,2024,54(5):725~733

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2023-10-13
  • 录用日期:
  • 在线发布日期: 2024-05-14
  • 出版日期: