基于多模复合探测方法的无人艇目标识别研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

面向成像式灵巧弹药的DCNN轻量化研究项目;高动态导航技术北京市重点实验室开放课题任务书项目资助。


Study on target recognition of USV based on multi mode composite detection method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着水面无人艇技术的不断发展和应用,其对于舰船的威胁程度也日益加剧。以末敏弹打击水面无人艇为背景,为了提升多元激光/红外/毫米波探测器对水面小型目标的识别性能,提出了一种基于多通道卷积神经网络(Multi Channel Convolutional Neural Network,MCCNN)和极端梯度提升决策树(Extreme Gradient Boosting,XGBoost)的复合探测信号识别方法MCCNN XGB,同时构建了单通道CNN识别网络与基于人工特征提取的XGBoost识别算法作为对照,最终通过水面目标无人机载探测试验数据对上述三种模型的目标识别性能进行评估与对比。测试结果表明,基于MCCNN XGB的识别算法表现最佳,测试准确率达到了97.26。本文所提出的识别方法能够有效进行复合探测信号的特征提取,并且能够降低误识别率与漏识别率,具有较好的识别效果。

    Abstract:

    With the continuous development and application of USV technology,its threat to ships is increasing.In order to improve the recognition performance of multi component laser/infrared/millimeter wave detector on small surface targets,a composite detection signal recognition method MCCNN XGB based on multi channel convolutional neural network(Multi Channel Convolutional Neural Network,MCCNN)and extreme gradient lifting decision tree(Extreme Gradient Boosting,XGBoost)is proposed.At the same time,a single channel CNN recognition network and XGBoost recognition algorithm based on artificial feature extraction are constructed as a comparison.Then,the target recognition performance of the above three models is evaluated and compared through the test data of UAV mount USV target.The test results show that the recognition algorithm based on MCCNN XGB performs the best,with a test accuracy of 97.26%.The recognition method proposed in this paper can effectively extract the features of the complex detection signal,and can reduce the false recognition rate and missing recognition rate,which has a good recognition effect.

    参考文献
    相似文献
    引证文献
引用本文

周昇辉,武军安,郭锐.基于多模复合探测方法的无人艇目标识别研究[J].激光与红外,2024,54(5):787~795
ZHOU Sheng-hui, WU Jun-an, GUO Rui. Study on target recognition of USV based on multi mode composite detection method[J]. LASER & INFRARED,2024,54(5):787~795

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-14
  • 出版日期: