基于点特征传递的电力设备部件激光点云补全网络
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省重点研发项目(No.202202130501008);山西省重点研发计划项目(No.2022ZDYF100)资助。


LiDAR point cloud completion network for power equipment components based on point feature transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电力场景下因激光雷达扫描范围有限、电力设备部件相互遮挡等因素导致电力设备部件点云缺失的问题,提出了基于点特征传递的电力设备部件激光点云补全网络PPC Net(Power Point cloud Complete Net)。该网络使用多尺度特征融合编码器提取不同尺度输入残缺点云的全局和局部特征,以避免多维度映射特征导致的电力设备部件细节特征丢失问题,并引入EdgeConv加强对点云邻域信息提取;在精细完整点云生成阶段提出DT模块整合父级点到子级点的特征传递,以保留生成点云的局部特征;设计平滑优化模块,经三级平滑采样算法输出分布均匀、表面平滑的电力设备部件完整点云。在自建电力设备部件点云数据集ELE及公开数据集PCN上实验表明,PPC Net对残缺的电力设备部件点云有较好的补全效果,并在一般形状点云上有良好泛化性。

    Abstract:

    Aiming at the problem of defective point cloud of power equipment components due to limited scanning range of LiDAR and mutual occlusion of power equipment components in power scenario,a power equipment component LiDAR point cloud completion network Power Point Cloud Complete Net(PPC Net) based on point feature transform is proposed in this paper.A multi scale feature fusion encoder is used to extract global and local features of defective point clouds at different scales to avoid the problem of losing detailed features of power equipment components caused by multi dimensional mapping,and EdgeConv is used to enhance the extraction of neighborhood information from point clouds.Then,the DT module is proposed to integrate feature transfer from parent to child points during the generation stage of fine and complete point clouds in order to preserve the local features of the generated point cloud.Next,a smooth optimization module is designed to output a complete point cloud of power equipment components with uniform distribution and smooth surface through three level smooth sampling algorithm.Experiments on the self built power equipment component point cloud dataset ELE and the public dataset PCN show that PPC Net has a good completion effect on defective power equipment component point clouds and good generalization on the general shape point clouds.

    参考文献
    相似文献
    引证文献
引用本文

裴佳慧,景超,王慧民,李雪薇,张兴忠,程永强.基于点特征传递的电力设备部件激光点云补全网络[J].激光与红外,2024,54(6):870~877
PEI Jia-hui, JING Chao, WANG Hui-min, LI Xue-wei, ZHANG Xing-zhong, CHENG Yong-qiang. LiDAR point cloud completion network for power equipment components based on point feature transform[J]. LASER & INFRARED,2024,54(6):870~877

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2023-10-27
  • 录用日期:
  • 在线发布日期: 2024-06-18
  • 出版日期: