基于图神经网络和注意力机制的点云分类模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省应用基础研究计划项目(No.2022JH2/101300203;No.2023JH2/101300148)资助。


Point cloud classification model based on graph neural network and attention mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了增强基于深度学习的三维点云分类模型对全局特征的建模能力,提高模型的泛化性能,在PointNet的基础上,提出了基于图神经网络和注意力机制融合的点云分类模型。首先,将提取的特征分别通过增加通道注意力模块和空间注意力模块,使模型更加关注全局上下文信息,抑制噪声信息,减少冗余参数,增强对全局特征的建模能力;其次,通过在多尺度球半径内进行不同K值最近邻搜索对编码的输入特征进行构图,既减小了图的规模,降低训练开销,又使模型学习不同层级的特征表示;最后,通过图卷积神经网络汇聚邻域信息,更新节点特征,并将不同图卷积神经网络层输出特征进行相加,融合多层级特征,提高分类准确率。本文在公用数据集 ModelNet40上进行训练与测试,其总体分类准确为886,优于通用的3DShapeNets、VoxNet、ECC、PointNet模型,证明了模型在点云分类上的优越性。

    Abstract:

    In order to enhance the modeling capability of global features in deep learning based 3D point cloud classification models and improve their generalization performance,a point cloud classification model based on the fusion of graph neural network and attention mechanism is proposed on the basis of PointNet.Firstly,the extracted features are used to make the model pay more attention to the global context information,suppress the noise information,reduce the redundant parameters,and enhance the modelling ability of the global features by increasing the channel attention module and the spatial attention module,respectively.Secondly,different K values nearest neighbor searches are performed within multiple scales of sphere radius to construct the input features for encoding,which not only reduces the scale of the graph and training overhead but also enables the model to learn features at different levels.Finally,neighborhood information is aggregated and node features are updated through graph convolutional neural networks.The output features of different graph convolutional neural network layers are summed up to fuse multi level features and improve classification accuracy.The proposed model is trained and tested on the public dataset ModelNet40,achieving an overall classification accuracy of 88.6%,which outperforms the commonly used 3DShapeNets,VoxNet,ECC,and PointNet models,demonstrating its superiority in point cloud classification.

    参考文献
    相似文献
    引证文献
引用本文

徐海涛,郝晓萍,晁欣,董少锋,李祥.基于图神经网络和注意力机制的点云分类模型[J].激光与红外,2024,54(8):1216~1220
XU Hai-tao, HAO Xiao-ping, CHAO Xin, DONG Shao-feng, LI Xiang. Point cloud classification model based on graph neural network and attention mechanism[J]. LASER & INFRARED,2024,54(8):1216~1220

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2023-12-29
  • 录用日期:
  • 在线发布日期: 2024-08-21
  • 出版日期: