基于卷积神经网络的目标检测与识别技术
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Convolutional neural network based on target detection and recognition technique
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决传统的目标检测与识别方法在复杂战场环境中的限制,本文提出了一种基于深度卷积神经网络(CNN)的方法,用于提取图像特征和定位目标。该方法综合考虑了传统的形状和纹理特征以及红外图像中的热点信息,通过大规模标注数据集的训练和反向传播算法的优化,提高了目标检测和识别的准确性。相比于传统方法,该方法能够自动学习图像中的特征表示,无需依赖手工设计的特征和分类器。为了验证算法的有效性,本文选用海思Hi3559AV100作为核心处理芯片设计硬件平台,通过将算法移植到该平台上,对收集到的数据样本进行分析测试,实验结果表明,该系统在复杂的背景环境中表现出相对稳定的性能,能够可靠地进行目标检测和识别。

    Abstract:

    To address the limitations of traditional target detection and recognition methods in complex battlefield environments,a deep convolutional neural network (CNN) based method for extracting image features and localizing targets is proposed in this paper.Traditional shape and texture features as well as the hotspot information in infrared images are comprehensively considered,and the accuracy of target detection and identification is improved through the training of large scale labeled datasets and the optimization of the back propagation algorithm.Compared with traditional methods,the method can automatically learn the feature representations in images without relying on manually designed features and classifiers.In order to verify the effectiveness of the algorithm,this paper selects the Hathi Hi3559AV100 as the core processing chip to design the hardware platform,and by porting the algorithm to this platform,the collected data samples are analyzed and tested,and the experimental results show that the system exhibits relatively stable performance in complex background environments,and is able to reliably perform target detection and recognition.

    参考文献
    相似文献
    引证文献
引用本文

周宽,耿宇飞,金旭,刘纪洲,任静.基于卷积神经网络的目标检测与识别技术[J].激光与红外,2024,54(8):1309~1315
ZHOU Kuan, GENG Yu-fei, JIN Xu, LIU Ji-zhou, REN Jing. Convolutional neural network based on target detection and recognition technique[J]. LASER & INFRARED,2024,54(8):1309~1315

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2023-12-08
  • 录用日期:
  • 在线发布日期: 2024-08-21
  • 出版日期: