基于改进CenterNet的红外小目标检测研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(No.52172381);重庆市研究生联合培养基地项目(No.JDLHPYJD2018003)资助。


Research on infrared small target detection based on improved CenterNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着机器学习技术的不断发展,对目标检测技术的研究也越来越火热。针对目标检测中精度低、实时性差的问题。本文采用了一种单阶段的目标检测算法CenterNet完成对目标的快速识别,在算法的主干网络ResNet50增加CBAM注意力机制,提升了网络对目标的识别精度;在网络的输出模块,采用一种新的GSConv卷积模块,在不损失精度的情况下提高了检测速度。改进后的算法在红外数据集上验证其检测的准确性,其检测准确率达到8291。研究结果表明:改进的CenterNet算法,可准确高效的完成对红外小目标的识别。

    Abstract:

    With the continuous development of machine learning technology,the research on object detection technology is becoming increasingly popular. To address the issues of low accuracy and poor real time performance in target detection,a single stage object detection algorithm CenterNet is adopted to achieve rapid recognition of targets. A CBAM attention mechanism is added to resnet50,the backbone network of the algorithm,to improve the recognition accuracy of the network on the target. In the output module of the network,a new GSConv convolution module is used to improve the detection speed without loss of accuracy. The improved algorithm is validated on the infrared datasetand its detection accuracy reaches 82.91%. The results show that that the improved CenterNet algorithm can accurately and efficiently accomplish the recognition of small infrared targets.

    参考文献
    相似文献
    引证文献
引用本文

倪安庆,李军,王耀弘.基于改进CenterNet的红外小目标检测研究[J].激光与红外,2024,54(9):146~145
NI An-qing, LI Jun, WANG Yao-hong. Research on infrared small target detection based on improved CenterNet[J]. LASER & INFRARED,2024,54(9):146~145

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-01-15
  • 录用日期:
  • 在线发布日期: 2024-09-18
  • 出版日期: