基于二进制深度图像描述符的点云配准方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

云南省旱限(警)水位确定试点与重点地区抗旱应急预案研究项目(No.2021YFC300020506)资助。


Point cloud registration method based on binary depth image descriptors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于局部特征的三维点云配准是计算机视觉和机器人技术领域的核心问题,现有的大多数三维局部特征描述符均是浮点型的。首先,本文提出了一种二进制局部特征描述符,即二进制深度图像描述符(BDIF),用于描述三维局部特征;其次,提出了一种基于BDIF的配准算法,用于大场景的点云配准。BDIF根据局部曲面到投影面的距离将局部结构编码为位串。具体来说,BDIF描述符是在关键点附近建立一个局部坐标系,以实现旋转不变性,然后在三个正交投影面上对空间信息进行编码。之后,根据阈值法完成二值化,并利用最大类间方差确定分割阈值。基于BDIF开发了一种高效的点云配准算法,该算法采用自适应尺度的Welsch估计空间变化参数,能有效处理大场景采集到的点云数据。最后分别在Retrieval和WHU TLS数据集上进行了广泛的实验,实验结果证明了本文所提的BDIF和基于BDIF的点云配准算法的有效性和总体优越性。

    Abstract:

    3D point cloud registration based on local features is a core problem in the field of computer vision and robotics,and most of the existing 3D local feature descriptors are of floating point type.In this paper,a binary local feature descriptor,the Binary Depth Image Descriptor(BDIF),is proposed for describing 3D local features,and a registration algorithm based on the BDIF is also put forward for point cloud registration of large scenes.The BDIF encodes the local structure as a bit string based on the distance of the local surface to the projection plane.Specifically,the BDIF descriptor establishes a local reference frame near the keypoints to achieve rotational invariance,and then encodes the spatial information on three orthogonal projection surfaces.After that,binarization is completed based on the thresholding method and the segmentation threshold is determined using the maximum inter class variance.An efficient point cloud registration algorithm is developed based on BDIF,which employs the adaptive scale Welsch to estimate the spatial variation parameters,and can effectively deal with the point cloud data collected from large scenes.Finally,extensive experiments are conducted on Retrieval and WHU TLS datasets,respectively,and the experimental results demonstrate the effectiveness and overall superiority of the BDIF and BDIF based point cloud registration algorithm proposed in this paper.

    参考文献
    相似文献
    引证文献
引用本文

江政远,蔡驭,杨俊成,范丹.基于二进制深度图像描述符的点云配准方法[J].激光与红外,2024,54(10):1569~1578
JIANG Zheng-yuan, CAI Yu, YANG Jun-cheng, FAN Dan. Point cloud registration method based on binary depth image descriptors[J]. LASER & INFRARED,2024,54(10):1569~1578

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-16
  • 出版日期: