基于多尺度注意力的MODIS云检测算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(No.2022YFB3902905);中国航天科技集团公司第八研究院产学研合作基金项目(No.SAST2023-026)资助。


A cloud detection method for MODIS based on multiscale attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云检测算法的研究可被应用于灾害预测、气象研究等领域,本课题研究的内容是MODIS(中分辨率光谱成像仪)图像的云检测算法,通过使用深度学习的语义分割算法来实现MODIS数据的云检测效果。本文结合U Net、注意力机制、多尺度网络,设计了一种新型的深度学习模型,该模型能够精确地检测图像中的云区域和非云区域。在实验环节,本文介绍说明了使用的数据集以及所选取的包括近红外的数据波段等,模型对于云检测的精确率和召回率分别为8858和9480。结果表明本文设计的深度学习模型在MODIS图像云检测方面具有良好的性能。

    Abstract:

    The investigation into cloud detection algorithms holds significant potential for applications in disaster prediction,meteorological research,and beyond.The focus of this research endeavor lies in the development of a cloud detection algorithm tailored for MODIS imagery,leveraging the power of deep learning′s semantic segmentation techniques to enhance the accuracy of cloud detection from MODIS data.This study introduces a novel deep learning model,which integrates the strengths of U Net,block self attention mechanisms,and multi scale network modules,to achieve a more precise differentiation between cloud and non cloud regions in remote sensing images.Building upon the robust foundation of the U Net architecture,our model incorporates attention modules and multi scale network elements.These enhancements are specifically designed to bolster the model′s capability in identifying subtle features of cumulus humilis and fractocumulus clouds,addressing the limitations of traditional cloud detection algorithms in detecting thinner cloud layers.The attention mechanism employed in this work harmoniously combines block self attention and multi scale channel attention.The former enhances the model′s sensitivity to global contextual information,thereby mitigating the challenge of poor detection in thin cloud layers.The latter,by extracting channel wise relevant features,complements the detection of smaller cloud formations that might otherwise be overlooked.In the experimental phase,we meticulously detail the dataset utilized,including near infrared spectral bands among other carefully selected data channels.The evaluation results showcase the model′s remarkable performance,with precision and recall rates of 88.58% and 94.80% respectively for cloud detection.These findings conclusively demonstrate the effectiveness of our designed deep learning model in accurately detecting clouds from MODIS imagery,underscoring its promising applications in advancing the field of remote sensing and related meteorological endeavors.

    参考文献
    相似文献
    引证文献
引用本文

张煜辉,边志强,魏倩茹.基于多尺度注意力的MODIS云检测算法[J].激光与红外,2024,54(11):1784~1790
ZHANG Yu-hui, BIAN Zhi-qiang, WEI Qian-ru. A cloud detection method for MODIS based on multiscale attention[J]. LASER & INFRARED,2024,54(11):1784~1790

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-18
  • 出版日期: