面向铁路场景的大规模点云语义分割方法研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省自然科学基金项目(No.F2022105018)资助。


Large scale point cloud semantic segmentation method for railway scene
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着高速铁路和城市轨道交通系统的快速发展,对交通安全技术的研究日益迫切。应用激光扫描技术生成的铁路线路环境三维点云,能够对运行环境实现准确的感知。本文以铁路场景的三维点云数据为研究对象,首次构建了铁路场景下的大规模点云语义分割数据集。针对现有点云语义分割模型主要适用于于小尺度场景,但是铁路线路环境的三维点云数据规模很大,为此,本文提出了一种面向铁路场景的大规模点云语义分割方法,在编码阶段提出了一种基于自注意力的自适应局部特征融合模块,可以更好地聚合不同尺度的局部特征,解决类别不均衡的问题;在解码阶段提出了一种高维语义信息引导下的上采样方法,弥补了在编码阶段较大尺度的下采样造成的信息损失。所提方法在铁路场景数据集及公共室内数据集上都取得了优异的分割性能。

    Abstract:

    With the rapid development of high speed railway and urban rail transit systems,research on traffic safety technology is becoming increasingly urgent.The 3D point cloud of railway line environment generated by applying laser scanning technology can achieve accurate perception and monitoring of operating environments.In this paper,the three dimensional point cloud data of railway scenes is taken as the research object,and a large scale point cloud semantic segmentation dataset for railway scenes is constructed for the first time.The existing point cloud semantic segmentation models are mainly applicable to small scale scenes,and large scenic point clouds need to be segmented first.However,three dimensional point cloud data of railway line environments have the characteristics of high data acquisition frequency and large data scale.Therefore,a large scale point cloud semantic segmentation method for semantic perception of railway scenes is proposed in this paper.During the coding stage,an adaptive local feature fusion module based on self attention is proposed in the encoding stage,which can better aggregate local features of different scales and solve the problem of category imbalance.In the decoding stage,an up sampling method guided by high dimensional semantic information is proposed to compensate for the information loss caused by large scale down sampling in the coding stage.The proposed method achieves excellent segmentation performance on both railway scene datasets and public indoor datasets.

    参考文献
    相似文献
    引证文献
引用本文

孟维傑,吴嘉诚,孙淑杰,刘俊博,郭剑勇,田媚,黄雅平.面向铁路场景的大规模点云语义分割方法研究[J].激光与红外,2024,54(12):1841~1849
MENG Wei-jie, WU Jia-cheng, SUN Shu-jie, LIU Jun-bo, GUO Jian-yong, TIAN Mei, HUANG Ya-ping. Large scale point cloud semantic segmentation method for railway scene[J]. LASER & INFRARED,2024,54(12):1841~1849

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-12
  • 出版日期: