激光切割机器人视觉图像目标标注研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

2022年江西省科技厅科技课题项目(No.GJJ2203317)资助。


Research on visual image object annotation oflaser cutting robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在激光切割的工业环境下会存在大量干扰元素,例如电磁干扰、振动、烟尘和颗粒物、外部环境以及光源等,当前的结合类别学习方法,对目标抽象图形中凸显区域缺少单独目标对齐过程,导致目标特征关联性不强,标注结果不准。提出基于改进YOLOv5s的激光切割机器人视觉图像目标标注方法。利用输入端、池化层、共享全连接层等搭建改进YOLOv5s模型,该网络使用最大池化与平均池化生成两幅激光切割机器人视觉图像,根据通道维度连接图像特征实现激光视觉图像目标粗定位,结合调制因子和目标检测损失实现目标特征对齐。在目标特征对齐后确定激光切割机器人视觉图像关键凸显区域帧,通过对激光切割机器人历史标注图像实施半监督训练,确定图像空间区域关联,根据区域关联进行激光视觉图像目标标注。实验结果表明:所提方法的激光切割机器人视觉图像目标标注的交并比与准确率高、速度快,拥有极强的鲁棒性。

    Abstract:

    In the industrial environment of laser cutting,there are a large number of complex backgrounds and other interfering elements such as equipment.The current combination of category learning methods lacks a separate target alignment process for the highlighted areas in the abstract target graphics,resulting in weak correlation between target features and inaccurate annotation results.Propose a visual image object annotation method for laser cutting robots based on improved YOLOv5s.By utilizing input terminals,pooling layers,and shared fully connected layers,an improved YOLOv5s model is built.This network uses max pooling and average pooling to generate two laser cutting robot visual images.Based on the channel dimension,the image features are connected to achieve rough target localization in the laser visual image,and target feature alignment is achieved by combining modulation factors and target detection losses.After aligning the target features,the key highlighted area frames of the laser cutting robot′s visual image are determined.By implementing semi supervised training on the historical annotated images of the laser cutting robot,the spatial region associations of the images are determined,and laser visual image target annotation is performed based on the region associations.The experimental results show that the proposed method for laser cutting robot visual image target annotation has high intersection to union ratio,high accuracy,fast speed,and strong robustness.

    参考文献
    相似文献
    引证文献
引用本文

熊艳飞,刘登邦.激光切割机器人视觉图像目标标注研究[J].激光与红外,2024,54(12):1864~1870
XIONG Yan-fei, LIU Deng-bang. Research on visual image object annotation oflaser cutting robot[J]. LASER & INFRARED,2024,54(12):1864~1870

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-12
  • 出版日期: