基于改进YOLOv8的红外无人机目标检测算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(No.62273192)资助。


Infrared UAV target detection algorithm based onimproved YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对红外无人机目标识别过程中特征丢失严重、识别准确率低及模型较为复杂的问题,提出一种改进YOLOv8的红外无人机目标检测算法。首先,在主干网络引入可变形卷积,增强目标区域的特征表达能力。其次,提出了一种针对小目标的轻量级特征金字塔网络结构SOD-FPN,通过减轻网络层数和删除大型目标检测头来避免小目标信息丢失,还通过跨尺度连接和加权特征融合方法来增强模型多尺度特征融合能力。最后,选择基于Wasserstein距离的NWDLoss作为边界框损失函数,进一步提升模型的收敛性和检测精度。实验结果表明:改进算法的mAP50为994,较YOLOv8n提升了22,参数量降低了728,同时相较于其他先进的目标检测算法在精度和速度上均有提升,证明了改进算法的有效性和先进性。

    Abstract:

    In order to solve the problems of serious feature loss,low accuracy and complex model in the process of infrared UAV target recognition,an improved infrared UAV target detection algorithm based on YOLOv8 is proposed.Firstly,deformable convolution is introduced into the backbone network to enhance the feature representation capability of the target region.Secondly,a lightweight feature pyramid network structure SOD FPN for small targets is proposed for small targets,which avoids the information loss of small targets by reducing the number of network layers and deleting large target detection headers.Moreover,the multi scale feature fusion capability of the model is enhanced by cross scale connection and weighted feature fusion method.Finally,NWD Loss based on Wasserstein distance is selected as the bounding box loss function to further improve the convergence and detection accuracy of the model.The experimental results show that the mAP50 of the improved algorithm is 99.4%,which is 2.2% higher than YOLOv8n,and the number of parameters is 72.8% lower.Meanwhile,compared with other advanced target detection algorithms,the accuracy and speed of the improved algorithm are improved,which proves the effectiveness and advancement of the improved algorithm.

    参考文献
    相似文献
    引证文献
引用本文

乔庆元,程换新.基于改进YOLOv8的红外无人机目标检测算法[J].激光与红外,2024,54(12):1941~1947
QIAO Qing-yuan, CHENG Huan-xin. Infrared UAV target detection algorithm based onimproved YOLOv8[J]. LASER & INFRARED,2024,54(12):1941~1947

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-04-22
  • 录用日期:
  • 在线发布日期: 2024-12-12
  • 出版日期: