基于改进YOLOv8n的红外行人车辆检测算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

人工智能四川省重点实验室科研项目(No.2019RYJ08)资助。


Infrared pedestrian vehicle detection algorithmbased on improved YOLOV8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鉴于红外行人车辆图像分辨率低,质量不佳,噪声多等特点,检测难度较大,提出一种基于YOLOV8的红外图像行人车辆目标检测算法,即PSWG YOLO。针对 YOLOv8n 网络,增加160×160的极大特征图P2提高模型对行人小目标的检测能力。同时,采用SPD Conv部分代替原网络stride 2的卷积层,提升对低分辨率图像的特征提取能力。此外,将损失函数替换为WIoU,优化模型对低质量图像的处理。最后,引入Ghost 模块降低模型复杂度。实验结果表明,改进后的PSWG YOLO算法在保证较高的检测精度的同时,显著减少了模型体积和参数量。与原YOLOv8n 算法在公开红外数据集FLIR_v2 上P、R、mAP@05分别提升16、63、72,且参数量减少16,模型大小减少 158,提高了红外场景下行人车辆检测的精度并易于部署。

    Abstract:

    Given that infrared pedestrian vehicle images are difficult to detect due to their low resolution,poor quality,and high noise,an infrared image pedestrian and vehicle target detection algorithm based on YOLOV8 is proposed,namely PSWG YOLO.For the YOLOv8n network,a 160×160 maximum feature map P2 is added to improve the model′s detection ability of pedestrian small targets.At the same time,the SPD Conv part is used to replace the stride 2 convolutional layer of the original network to improve the feature extraction capability of low resolution images.In addition,the loss function is replaced with WIoU to optimize the model′s processing of low quality images.Finally,the Ghost module is introduced to reduce model complexity.The experimental results show that the improved PSWG YOLO algorithm significantly reduces the model volume and parameter amount while ensuring high detection accuracy.Compared with the original YOLOv8n algorithm,the P,R,and mAP@0.5 on the public infrared data set FLIR_v2 are increased by 1.6%,6.3%,and 7.2% respectively,and the number of parameters is reduced by 16%,and the model size is reduced by 15.8%,which improves the accuracy of the pedestrian vehicle detection in infrared scenarios and is easy to deploy.

    参考文献
    相似文献
    引证文献
引用本文

秦海洋,谭功全,邓豪,王峣,蔡大洋,文力.基于改进YOLOv8n的红外行人车辆检测算法[J].激光与红外,2025,55(1):130~137
QIN Hai-yang, TAN Gong-quan, DENG Hao, WANG Yao, CAI Da-yang, WEN Li. Infrared pedestrian vehicle detection algorithmbased on improved YOLOV8[J]. LASER & INFRARED,2025,55(1):130~137

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-05-06
  • 录用日期:
  • 在线发布日期: 2025-01-17
  • 出版日期:
×
最新公告
根据主办单位安排,编辑部2025年春节放假时间为1月26日~2月9日,2月10日起正常上班。放假期间投稿系统正常运行,其他业务暂缓办理。
    考虑寒假和快递物流等影响,为避免信件丢失,2025年第一、二期的杂志样刊等相关信件拟在3月份前后通过邮政快递发出,可通过本刊平台浏览、下载当期封面、目录、文章电子版。
    另外,本刊电子书架现已上线,可点击平台首页“电子书架”或扫码在线阅读。