基于SAE-YOLOv5的机载红外UXO目标检测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(No.2020YFC1511702);高动态导航技术北京市重点实验室项目;“慧眼行动”创新成果转化应用项目(XXX新型多模智能探测系统)资助。


Airborne infrared UXO target detection method based on SAE YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机在多种植被环境下检测地面未爆弹的光学精度低、误检率高等问题,提出了一种基于未爆弹红外特征的YOLOv5未爆弹检测方法。首先对采集到的未爆弹目标数据进行重建,然后引入ECA注意力机制以提高识别精度;同时引入ASPP空洞空间金字塔池化以提高识别效率,并使用CIoU_NMS作为预测框筛选依据。实验证明,在多组不同植被环境的鸟瞰UXO目标红外数据集上,SAE YOLOv5算法相较于原YOLOv5算法模型,在UXO目标方面精确率由83提高至87,平均精度均值从836提升至85。该算法在文中所述的四种复杂背景下都能有效检测UXO目标,并且漏警率低。

    Abstract:

    To address the problems of low optical precision and high false alarm rate in detecting unexploded ordnance(UXO)on the ground in various vegetation environments with drone based optical detection,a UXO detection method based on the infrared features of unexploded ordnance using YOLOv5 is proposed in this paper.Firstly,the target data of unexploded ordnance is reconstructed,and the ECA attention mechanism is introduced to improve the recognition accuracy.At the same time,the ASPP hole space pyramid pooling is introduced to improve the recognition efficiency,and the CIoU_NMS is used as the prediction box selection criterion.The experimental results show that on the bird′s eye view UXO target infrared data set in multiple groups of different vegetation environments,the SAE YOLOv5 algorithm has an improvement in UXO target precision from 83% to 87%,and the average precision mean is improved from 83.6% to 85%,compared with the original YOLOv5 algorithm model.The algorithm is effective in detecting UXO targets in the four complex backgrounds mentioned in the paper,and with a low false alarm rate.

    参考文献
    相似文献
    引证文献
引用本文

刘子玉,赵旭,李连鹏,许学平.基于SAE-YOLOv5的机载红外UXO目标检测方法[J].激光与红外,2025,55(2):288~295
LIU Zi-yu, ZHAO Xu, LI Lian-peng, XU Xue-ping. Airborne infrared UXO target detection method based on SAE YOLOv5[J]. LASER & INFRARED,2025,55(2):288~295

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-06-25
  • 录用日期:
  • 在线发布日期: 2025-02-24
  • 出版日期:
×
最新公告
根据主办单位安排,编辑部2025年春节放假时间为1月26日~2月9日,2月10日起正常上班。放假期间投稿系统正常运行,其他业务暂缓办理。
    考虑寒假和快递物流等影响,为避免信件丢失,2025年第一、二期的杂志样刊等相关信件拟在3月份前后通过邮政快递发出,可通过本刊平台浏览、下载当期封面、目录、文章电子版。
    另外,本刊电子书架现已上线,可点击平台首页“电子书架”或扫码在线阅读。