一种复杂背景下电气设备红外图像精确分割方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江西省重大科技研发专项项目(No.20223AAE02004)资助。


An accurate segmentation method for infrared image of electrical equipment under complex environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电气设备精确分割是红外图像故障诊断的关键环节,针对主流的语义分割方法对复杂背景下红外图像电气设备分割容易丢失细节问题,提出一种复杂背景下电气设备红外图像精确分割方法。首先,以UNet网络为主体结构改进PSPNet,将UNet网络提取的最高层特征经过多尺度金字塔池化后进行解码;其次,在特征提取主干网络中对每层提取的特征加入卷积注意力机制(Convolutional Block Attention Mechanism,CBAM),从通道和空间2个维度获取图像上下文信息提升网络对电气设备的关注度以增强网络的抗干扰性;最后,构建PSPnet CBAM Unet网络,将CBAM注意力机制输出的特征图作为下层特征提取的输入和解码层跳跃连接特征。以复杂背景下电压互感器、电流互感器和断路器三类设备红外图像分割为例测试本文方法有效性,实验结果表明,本文方法对三类电气设备分割交并比和像素准确率均分别大于92和94,分割的准确性优于UNet,PSPNet,Deeplabv3+网络,对复杂背景下红外图像电气设备的细节分割更准确。

    Abstract:

    The precise segmentation of electrical equipment is a key step in infrared image fault diagnosis.An accurate segmentation method is proposed for infrared images of electrical equipment in complex backgrounds to address the issue of detail loss with mainstream semantic segmentation methods.Firstly,the PSPNet is improved by incorporating UNet network as the main structure to decode the multi scale pyramid pooling of features extracted by UNet′s top layer.Secondly,Convolutional Block Attention Mechanism(CBAM)is integrated into the feature extraction backbone network to incorporate channel and spatial attention mechanisms for gathering image context information from both dimensions,enhancing the network′s focus on electrical equipment to improve its anti interference capability.Finally,the PSPnet CBAM Unet network is constructed,and the features output by the CBAM are used as inputs for lower level feature extraction and skip connection features in the decoding layer.The effectiveness of this paper′s method is tested with the segmentation of three types of devices in infrared images under complex backgrounds including voltage transformers,current transformers,and circuit breakers.Experimental results demonstrate that the proposed method achieves intersection over union and accuracy greater than 92% and 94% respectively,and the accuracy of segmentation is better than that of UNet,PSPNet,and Deeplabv3+ networks,and it is more accurate for the detail segmentation of infrared images of electrical equipment in a complex background.

    参考文献
    相似文献
    引证文献
引用本文

王琦,张欣唯,童悦,王昱晴,张锦,王咏涛,袁小翠[JP].一种复杂背景下电气设备红外图像精确分割方法[J].激光与红外,2025,55(3):399~407
WANG Qi, ZHANG Xin-wei, TONG Yue, WANG Yu-qing, ZHANG Jin, WANG Yong-tao, YUAN Xiao-cui. An accurate segmentation method for infrared image of electrical equipment under complex environment[J]. LASER & INFRARED,2025,55(3):399~407

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-14
  • 出版日期: