基于神经网络的碲锌镉衬底单晶识别技术研究
作者:

Research on single crystal recognition technology ofCdZnTe substrate based on neural network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    碲锌镉晶体材料是第三代高性能、长波/甚长波碲镉汞红外焦平面探测器首选的衬底材料。但是碲锌镉材料自身特性,生长的晶体中存在杂晶和孪晶区域,影响器件的性能。现阶段主要通过人工识别单晶区域,完成单晶晶片的切割,存在效率低、轮廓识别不清晰等问题。本文旨在通过以多角度晶片表面形貌视觉识别装置为基础,并将基于神经网络的图像分割技术应用于碲锌镉晶片单晶区域识别中,以实现对碲锌镉单晶与杂晶区域的自动划分,为单晶区域自动划切工艺提供基础。

    Abstract:

    CdZnTe crystal material is the preferred substrate material for third generation high performance,long/very long wave cadmium telluride infrared focal plane detectors. However,due to the inherent characteristics of CdZnTe material,the presence of polycrystalline and twin regions in the grown crystals affects device performance. At present,the main method for cutting single crystal wafers is through manual identification of single crystal regions,resulting in low efficiency and unclear contour recognition. In this paper,based on a multi angle wafer surface topography visual recognition device,neural network based image segmentation technology has been applied to the identification of single crystal regions in Te Zn Cd wafers,enabling the automatic differentiation between Te Zn Cd single crystal and polycrystalline regions. This provides a foundation for the automatic cutting process of unit price regions.

    参考文献
    相似文献
    引证文献
引用本文

马世杰,马海亮,韦杰,张佳欢.基于神经网络的碲锌镉衬底单晶识别技术研究[J].激光与红外,2025,55(6):978~983
MA Shi-jie, MA Hai-liang, WEI Jie, ZHANG Jia-huan. Research on single crystal recognition technology ofCdZnTe substrate based on neural network[J]. LASER & INFRARED,2025,55(6):978~983

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-06-09