不同光源对激光尘埃粒子计数器性能的影响

纪运景, 卞保民, 贺安之

(南京理工大学 信息物理与工程系,江苏 南京 210094)

摘 要:使用 Beam Profile2350 光束诊断仪测量了氦氖激光和半导体激光两种典型光源的光束 特性,并分析了将它们作为激光尘埃粒子计数器的光源时,其在光敏区所产生光场的不均匀性。同 时讨论了光场不均匀对计数器性能的影响,计算了两种不同光源下,计数器计数效率和分辨比率的 差异。结果表明,以半导体激光作为计数器光源时,光敏区的光强均匀性更好,计数效率更高,粒径 的分辨比率较氦氖激光作用时提高了 17 %,增大了粒径的有效测量范围。

关键词:激光尘埃粒子计数器; 光敏区; 粒径分辨比率; 计数效率 中图分类号:TN247 文献标识码:A 文章编号:1007-2276(2004)03-0264-05

Research on performances of LPCS with different lamphouses

JI Yun-jing, BIAN Bao-min, HE An-zhi

(Department of Information Physics and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China)

Abstract : Light intensity distributions of two typical lamp-houses used in Laser Particle Counter System (LPCS) — He-Ne laser and semiconductor laser are measured by Beam Pro_{file}2350. According to the results, intensity uniformity of sensitive volumes formed by two lamp-houses respectively is analyzed. Using the LPCS, the particle size distributions of the normal particles are measured and corresponding counting efficiency and distinguishability are calculated. The results indicate that intensity uniformity of sensitive volume formed by semiconductor laser is better than that formed by He-Ne laser, and correspondingly, the former has better counting efficiency and distinguishability. By comparision with using He-Ne laser, LPCS using semiconductor laser can make its distinguishability of particle diameters increase 17 %.

Key words LPCS; Sensitive volume; Distinguishability of particle diameter; Counting rate

收稿日期:2003-10-05; 修订日期:2003-11-01

作者简介:纪运景(1978-),女,河北深泽县人,助教,主要从事激光测试、微粒检测方面的研究。

0 引 言

激光尘埃粒子计数器是以 Mie 散射理论为基础 的测量颗粒大小的仪器,主要用于微电子、光电子、生 物医学工程、航天技术、材料科学等领域的洁净环境 及超净环境洁净度的测试。有关光学尘埃粒子计数 器的研究大多集中在测量方式^[1,2]、光学传感系统设 计^[3,4]、信号分析模型^[3,5]、反演方法^[6,7]及粒子形 貌^[8]等方面。氦氖激光和半导体激光是计数器光源 的两种典型激光,但有关它们对计数器分辨比率、计 数效率等性能的影响的理论及实验研究还很少。

应用 Beam Profile 2350 光束诊断仪对光敏区光场 强度均匀性进行测量,并通过对两种标准粒子的验证 实验,分析了不同激光光源对计数器分辨比率、计数 效率等的影响。

计数器光敏区实际结构及粒子群信号幅度 分布特点

光学尘埃粒子计数器光敏区是指计数器聚光腔 内粒子群采样气流(沿 y 轴正方向)与照明光束(沿 z 轴正方向)垂直相交的区域中与粒子散射光收集光阑 共轭的部分,如图 1 所示。计数器工作时,粒子随气 流流经光敏区时,产生对应的光脉冲,仪器依据脉冲 幅度大小判断粒子粒径分布。

图1 光敏区示意图

Fig. 1 Sketch map of the sensitive volume

设 (*r*, *n*)代表粒子散射光收集立体角内总的有 效散射截面,一般取折射率 *n* 为常量; 为光学系统 对粒子散射光的收集效率,一般也取常数; *I*(*x*, *y*, *z*) 为光敏区照明光强度分布, *x*, *y*, *z* 为光敏区中的空间 坐标;同时考虑光学传感器的光电信号转换特性、前置放大电路等对信号幅度的影响,引入电路系统参数 *K*。这样,粒径为 *r* 的粒子穿越光敏区时所产生的散射光脉冲信号幅度可记为:

$$V = K (r, n) I(x, y, z)$$

粒子散射光脉冲信号的幅值 V_m (单个脉冲信号 幅度的最大值)与粒子在 x 轴方向的位置有关,而脉 冲宽度与粒子穿越光敏区的时间成正比,当采样气流 中各粒子均以同速直线穿过光敏区时,脉冲宽度就仅 由光敏区 y 轴方向的线度决定。在仅考虑散射光脉 冲信号幅值大小时,可取光敏区中 y = 0 的光敏面, 如图 1 所示,并且认为沿光束轴线 z 方向上光强是不 变的,那么上式变为:

$$V_{\rm m} = K (r, n) I(x)$$
(1)

一理想情况下,光敏区中的照明光强空间分布均匀 一致,且不随时间变化,此时计数器测得的脉冲信号 幅值仅为粒径 r的函数,而全同粒子将产生幅值完全 相同的脉冲信号。

实际情况中,光敏区内的光强度都存在不同程度 的不均匀性。研究光敏区光强非均匀性对计数器计 数性能产生的影响,可假设采样气流为粒径 *r* 的全同 粒子,光敏面上粒子数空间分布密度均匀,此时 (*r*, *n*)为常数。由公式(1)可见,脉冲信号幅值 *V*_m 与照 明光强 *I*(*x*)成正比,光强度变化 *I* 时,引起信号幅 值变化 *V*_m:

$$V_{\rm m} = K \qquad I \tag{2}$$

设单位时间内通过光敏区的尘埃粒子总数目为 N_0 ,产生的信号脉冲数为 M_0 ,显然有 $M_0 = N_0$ 。设粒 子群 N_0 中产生的信号脉冲幅值在 $V_{\rm m} = V_{\rm m}$ 范 围内的脉冲数为 M,则粒子群产生信号幅值 $V_{\rm m}$ 的 概率密度为:

$$(V_{\rm m}) = \frac{M}{M_0 V_{\rm m}} \tag{3}$$

假设光敏面中照明光强度在 *I I* + *I* 区间内 的面积为 *S*(*I*),而照明光在整个光敏面上分布面 积为 *S*₀,因此可定义光敏面中照明光强度为 *I* 的概 率密度 (I)为:

266

$$(I) = \frac{S(I)}{S_0 I} \tag{4}$$

已知总的光敏面积 *S*₀ 上均匀分布粒子数为 *N*₀, 产生总脉冲数目为 *M*₀。由于已假设光敏区内粒子数 密度分布均匀,且信号幅值与照明光强度成正比,那 么,分布在照明光强度 *I I*+ *I*范围内的面积 *S* (*I*)中的粒子数目可设为 *N*, *N* 个粒子会产生 *M* 个幅值为 *V*_m的脉冲信号,其关系式为:

$$M = N = c S(I)$$

$$M_0 = N_0 = cS_0$$
(5)

式中 *c* 为粒子分布的空间密度。

由公式(2)~(5)可得:

$$(I) = \frac{S(I)}{S_0 I} = \frac{M}{M_0 I} = K \frac{M}{M_0 V_m} = K (V_m)$$

(I)
$$(I) = K (V_m) = K (V_m)$$

可以看出,尘埃粒子信号幅值概率密度分布与光 敏区照明光强概率密度分布之间呈线性关系。这样, 对单径标准粒子进行测量,其信号幅值概率密度分布 曲线应与光敏区光强概率密度分布曲线形状相同。

为了验证此结论,下面分别将 He-Ne 激光与半导 体激光作为 Y09-9 型激光尘埃粒子计数器光源,测量 两种情况下光敏区的光强分布与相应条件下标准粒 子的信号幅度分布状况。

2 计数器光敏区光强分布测量

用 Beam Pro_{file}2350 光束诊断仪测量 Y09-9 型激 光尘埃粒子计数器光敏区光强分布。图 2、3 分别为 He-Ne 激光(200 mm、1 mW、波长 6328 ×10⁻¹⁰ m)和半 导体激光(波长 650 nm、5 mW)作光源时,对应的光敏 区中心 y = 0 光束截面上的相对光强在某一时刻的 瞬时分布图。

从图中可以看出:氦氖激光的光强分布几乎为理 想的高斯形,幅度的随机涨落仅为2%。但其特点是

在偏离光束中心的地方光强衰减很快(见图 3 (a)),0.5 mm 线宽的光敏区在其边缘处光强下降为

图 2 计数器光敏区光束截面上光强三维分布图

Fig. 2 Three-dimensional distribution of light intensity

- 图 3 计数器光敏区光束截面上的光强二维分布图(±x₀为光敏区 边缘部位的 x 方向坐标)
- Fig. 3 Two-dimensional distribution of light intensity on light section of sensitive volumes

中心值的 30 %(参见图 3(a))。而半导体激光束中心 截面光强分布呈矩形结构(图 3(b)),在同样线度的 光敏区范围内平均光强几乎没有变化。虽然幅度随 机涨落达到 10 %,但就整体范围而言,半导体激光强 度空间分布的均匀性好于氦氖激光(见图 3)。同时, 这一结论也可以由这两种光源照射下的光敏区光强 度概率密度分布情况得出。

图 4 为根据光强分布测量结果 (图 3) 计算出来 的光敏区内光束截面 x 方向光强度概率分布曲线。 曲线表明:氦氖激光强度概率分布很宽且平坦,因为 其强度分布近似三角波所致;而半导体激光光强概率 分布窄而高,近似 曲线^[9](理想均匀光敏区所对应 的概率分布),说明光敏区光场强度均匀性好。

- 图 4 半导体激光与氦氖激光分别作用时光敏区内光强度概率密 度分布
- Fig. 4 The probability density distribution of light intensity of sensitive volumes formed by He-Ne laser and semiconductor laser respectively

3 尘埃粒子计数器对标准粒子信号幅度分布 的测定

用 256 通道的计数电路对国产 Y09-9 型激光尘 埃粒子计数器光电传感器的信号幅值分布进行测量, 标准粒子粒径分别为 0.38 μm、0.54 μm。每种情况分 别测量 5 组数据(见表 1),每组计数时间均为 1 min, 将这些数据平均并进行归一化,得到如图 5 所示的粒 子信号幅值概率分布,纵坐标代表粒子信号幅值概率 密度,横坐标为通道电压,每个通道电压幅度间隔为 20 mV。

由图 5 可见,将氦氖激光作为光源,两种粒子信 号幅度概率分布曲线均近似台阶形状,没有明显的峰 值出现,0.38 µm 粒子信号幅值概率密度分布半高宽 所占通道数为 27,而0.54 µm 粒子信号幅值概率密度 分布半高宽占通道数为 78,信号离散程度较大;同时 还计算出两种标准粒子信号的分辨比率仅为 71%。

7

图 5 用不同光源测量标准粒子信号幅值概率密度分布

Fig. 5 The probability density distribution of the pulse signal amplitude produced by normal particles using different lamphouses

可以预见,当粒径继续增大时,粒子的信号幅值概率 密度分布曲线阶高越小,半高宽越大,即曲线的台阶 状会愈来愈不明显。而将半导体激光作为光源,两种 粒子信号幅值概率密度分布曲线呈显著单峰状结构, 信号离散程度较小,0.38 µm 粒子信号幅度分布半高 宽占通道数为 11,峰点位于第 8 通道附近,0.54 µm 粒子占通道数为 13,峰点位于 26 通道附近;同时两种 粒子信号的分辨比率达 88 %,比氦氖激光作光源时 高 17 个百分点。

4 不同光源对激光尘埃粒子计数器性能影响 的分析

由公式(4)可知,粒子信号幅值概率密度分布(见 图 5)与光敏区内光强概率分布(见图 4)为线性关系。 在不计噪声影响的前提下,以同种光源照射时,不同 粒径粒子的信号幅度概率分布曲线形状应相同,而粒 径的不同应该只是体现于曲线在概率图位置上的不 同,曲线峰值电压通道随粒径增大而增大,由图 5 与 图 4 可见,这一点与实验测量情况完全吻合。

将图 4 与图 5 相比较可见:用半导体激光作光源 时的粒子信号概率分布曲线与理论情况吻合较好;而 以氦氖激光作光源时,因为光场的均匀性差,使得小 粒子在光场较弱的地方散射信号过小,湮没于噪声 中,计数效率降低。由表 1 可看出,无论对0.54 μm还 是对 0.38 μm 的标准粒子,使用 He-Ne 激光光源的 计数总数明显比使用半导体激光光源的少,反映在图 5 上即为 0.38 μm 标准粒子信号曲线被削窄,与理

Tab.1 Comparison between the normal particles with diameter 0.38 μm and							
0.54 µm using different lamphouses							
		No.1	No.2	No. 3	No.4	No.5	Mean value
0.54 µm	He-Ne laser	3717	3749	3784	3936	3809	3799
	Semiconductor laser	6769	7101	7684	7445	6671	7134
0.38 µm	He-Ne laser	11978	11859	12095	11403	11845	11836
	Semiconductor laser	17332	17463	18598	15615	18154	17432

表 1 不同光源下 0.38 µ m、0.54 µ m 标准粒子计数总数比较

论曲线相差较大,但是这种光场不均匀性对大粒子影 响较小。另外,对于54 um标准粒子,不论何种光源 作用,其信号幅值概率密度分布曲线在0通道附近都 有所提升,并认为这是由于54 um标准粒子中可能含 有部分 38 um 标准粒子所致,由实验曲线计算可得, 杂质比例约为10%。

由于在半导体激光作光源时较氦氖激光作用下 的光敏区光强均匀性好,粒子信号离散度相对较小, 所以信号幅值概率密度分布曲线的半高宽小,前者较 后者作光源使得不同粒径粒子信号分辨比率提高了 17%.同时由于峰值电压通道相距远粒径的有效量程 增大。

5 结 论

268

应用 Beam Profile2350 光束诊断仪,对半导体激光 和氦氖激光作用下尘埃粒子计数器的光敏区光强度 分布进行了测量,并用256通道计数器电路对粒子信 号幅值概率密度分布进行测量,分析了不同光源对计 数分辨比率、计数效率及有效量程的影响。通过比较 发现,以氦氖激光作光源,在线宽为0.5 mm 光敏区光 场强度不均匀,边缘附近光场很弱,导致小粒子光散 射信号低于阈值而使得计数器无法统计 .造成计数效 率降低。而且以半导体激光作光源时,光敏区的光场 强度均匀性好,计数效率高,分辨比率也较氦氖激光 作用时提高了 17 个百分点,进而增大了粒径的有效 量程:且不同粒径粒子信号分布曲线半高宽一致、形 状相近,粒子信号幅值的离散程度小,与理论分布曲 线吻合较好。

参考文献:

- [1] Ariessohn P C, Self SA, Eustis R H. Two-wavelength laser transmissometer for measurements of the mean size and concentration of coal ash droplets in combustion flows[J]. A O, 1980, 19(22):3775-3783.
- [2] 徐贯东,王乃宁. 多波长散射光通量法测颗粒尺寸分布的实验 研究[J]. 应用激光, 1997, 17(2):61-64.
- [3] 黄廷磊,郑刚,王乃宁. 室内空气中颗粒状污染物的计数技术 [J]. 应用光学,2000,21(2):17-21.
- [4] 黄惠杰,邹海星. 激光粒子计数器的信噪比和光学系统[J]. LSI 制造与测试, 1991, 12(5):22-25.
- [5] 蔡小舒,王乃宁,光全散射法测量微粒尺寸分布的研究[J],光 学学报 .1991 .11(11) :1049-1053.
- [6] Sivakumar Manick avasagam, Meng M P. Scattering-matrix elements of coated infinite - length cylinders, AO, 1998, 37(12):2473-2478.
- [7] Ferri F, Righini G, Paganini E, Inversion of low-angle elastic lightscattering data with a new method devised by modification of the Chahine algorithm[J]. A O ,1997 ,36(30) :7539-7550.
- [8] 王亚伟. 微粒尺度分布测量方法及其理论的研究[D]. 南京:南 京理工大学,2001.
- [9] 卞保民,贺安之,程晓飞. 尘埃粒子计数器单分散粒子信号幅度 分布研究[J]. 东南大学学报,1999,29(1):145-149.