文章编号:1001-5078(2006)08-0710-05

粒子群优化算法用于缺陷的红外识别研究

寇 蔚,孙丰瑞,杨 立

(海军工程大学船舶与动力学院热工教研室,湖北 武汉 430033)

摘 要:讨论了利用一种较新的仿生优化算法——粒子群优化算法 (PSO)进行缺陷的红外识 别的一条途径。 PSO算法可以不用计算梯度,因此可以和通用的有限元软件结合起来,对比 较复杂的缺陷识别问题都可以采用同一手法进行求解,并使得优化算法和有限元编程实现了 有效的隔离。最后给出了 PSO算法在泛圆台类缺陷红外识别中一个简单的应用例子。 关键词:粒子群;优化算法;缺陷识别;红外

中图分类号: TK12; TN219 文献标识码: A

Research on PSO Algorithm Applied in Defect Identification Using Thermal Imager

KOU Wei, SUN Feng-rui, YANG Li

(Themal Physics Research Group, College of Naval Architecture and Power, Naval University of Engineering,

Wuhan 430033, China)

Abstract: A novel biological optimization algorithm, particle swarm optimization (PSO) algorithm, is applied in defect identification in the paper Diversified universal FEM software such as ANSYS or NASTRAN can be combined with the algorithm, since the hard-won calculation of gradient is not required, and the programming of FEM and optimization algorithm can be isolated effectively, which makes many sophisticated cases solved easily. A simple defect identification case is also discussed in the paper

Key words: particle swam; optimization algorithm; defect identification; infrared

1 前 言

由于复合材料制造过程中,较难对各种工艺参数进行精确控制,造成复合材料质量不稳定,离散性大,并且在使用过程中,静载荷、机械损伤、疲劳、蠕变、过热等原因也会引起复合材料破坏,因此有必要在生产和使用过程中对复合材料进行无损检测。通常应用于复合材料的无损检测技术包括:超声方法、声发射检测、射线检测方法、表面渗透方法和红外热像方法等。

基于温度场分布原理的红外热像检测技术,因 其具有非接触、可大面积扫描、快速等特点,已成为 复合材料结构无损检测的高效、快速方法。

红外热像检测的基本原理是利用被检物体的不 连续性缺陷对热传导性能的影响,进而反映在物体 表面温度的差别上,即物体表面的局部区域产生温 度梯度,导致物体表面红外辐射能力发生差异,检测 出这种差异,就可以推断物体内部是否存在缺陷。 在这方面,定性的分析应用已经相当广泛,但是如何 根据物体表面的温度场,对缺陷进行定量的评估,则 仍然处于研究之中。而现代计算机技术以及数字信 号处理技术的迅猛发展,为研究红外热像法无损检 测提供了良好的手段^[1]。

2 缺陷的辨识与优化算法 对缺陷进行定量的评估即辨识,就是根据物体

作者简介:寇 蔚(1977-),男,海军工程大学工程热物理专业 博士研究生,现在主要从事传热反问题,红外故障诊断等方面的研 究。

收稿日期: 2006-02-04;修订日期: 2006-03-09

711

表面的温度场,推断出物体内部缺陷的大小、位置和 形状,这属于一个典型的有限元(FBM)反问题,而 反问题的实质,则是一个优化问题。因此,任何一个 成熟的优化算法,在理论上都可以运用到有限元反 问题的求解上来。

优化算法的步骤通常是:选取初值,考虑是否满 足一定的约束条件,进行正问题求解,根据解与测量 值的误差(即为目标函数值),选取步长,进行迭代。 而在有限元反问题中,正问题的求解就是根据初始 及边界条件,利用一个 FEM 求解器,得到温度场。 这个 FEM 求解器,对于一些简单的设备及缺陷,通 常可以通过手动编写有限元程序,但是,对于比较复 杂的设备和缺陷,则往往采用比较成熟的大型商用 有限元软件,如 ANSYS, NASTRAN等。将商用有限 元软件与自己编写的优化算法有效地结合起采,便 可以得到一条通用的 FEM反问题的计算途径。

但是通常的比较有效的优化算法,如梯度下降 法、共轭梯度法等,在步长的选取上都会涉及到一个 梯度算法的问题,这对于由自己编写的有限元程序 来说,比较容易实现,而对于使用商用有限元软件来 编写的有限元程序,则很困难,有时甚至是不可能 的。因此,编写高效的、不需要进行梯度计算的优化 算法显得尤为重要。在这类算法中,遗传算法(GA) 等仿生算法在最近几年得到了充分的运用和发 展^[2-5]。

3 粒子群优化 (PSO)算法

粒子群优化算法 (Particle Swarm Optimization, PSO)是一种基于生物社会系统的进化计算技术,源 于对鸟群捕食的行为研究,是由 Eberhart博士和 Kennedy博士发明的^[6-7]。生物社会系统是研究在 由简单个体组成的群落与环境以及个体之间的互动 行为,也可称做"群智能"(swarm intelligence)。这 些模拟系统利用局部信息从而可能产生不可预测的 群体行为,在计算智能 (computational intelligence)领 域有两种基于群智能的算法:蚁群算法 (ant colony op tim ization, ACO)和粒子群优化算法 (particle swam optimization, PSO)。前者是对蚂蚁群落食物 采集过程的模拟,已经成功运用在很多离散优化问 题上^[8-9];后者也是起源对简单社会系统的模拟,最 初设想是模拟鸟群觅食的过程,但后来发现它是一 种很好的优化工具,目前已广泛应用于函数优化、神 经网络训练、模糊系统控制以及其他遗传算法的应 用领域。

PSO中,每个优化问题的解都是搜索空间中的

一只鸟,称之为"粒子"。所有的粒子都有一个由被 优化的函数决定的适应值(fitness value),每个粒子 还有一个速度决定他们飞翔的方向和距离。然后粒 子们就追随当前的最优粒子在解空间中搜索,PSO 初始化为一群随机粒子(随机解),然后通过迭代找 到最优解。在每一次迭代中,粒子通过跟踪两个 "极值 来更新自己,其中一个就是粒子本身所找到 的最优解,这个解叫做个体极值 Pbest;另一个则是整 个种群目前找到的最优解,这个极值是全局极值 gbest。另外也可以不用整个种群而只用其中一部分 作为粒子的邻居,那么在所有邻居中的极值就是局 部极值。在找到这两个最优值时,粒子根据公式 (1)、(2)来更新自己的速度和新的位置(如图 1)。

图 1 PSO算法流程图

$\overrightarrow{n+1} =$	$\overrightarrow{n} + c\mathbf{l} \cdot ($	rand()	$\cdot (\overrightarrow{P_{best}})$	$\overrightarrow{P}_{0,n} + c2$	\cdot rand ()	$\cdot (\overrightarrow{g}_{best, n})$	$\overrightarrow{P_{0,n}}$)
							(1)
			\rightarrow				

 $\overrightarrow{P}_{0,n+1} = \overrightarrow{P}_{0,n} + \overrightarrow{n}_{n+1}$ (2)

式中,[¬]是粒子的速度; $\overrightarrow{P_0}$ 是当前粒子的位置; mand()是介于(0,1)之间的随机数; c1、c2是学习因 子;通常情况下 c1 = c2 = 2。在每一维粒子的速度都 会被限制在一个最大速度 max内,如果某一维更新 后的速度超过用户设定的 max,那么这一维的速度 就被限定为 max。

应用 PSO 解决优化问题的过程中有两个重要

的步骤:问题解的编码和适应度函数。PSO的一个 优势就是采用实数编码,而适应度函数则通常就是 优化问题中的目标函数^[10-11]。

4 泛圆台类缺陷的参数反演

设备上的缺陷可以看成是由两个不同形状的物 体相割形成的。如常见的平板内的球形孔洞,可以 看成是平板与圆球相割的结果,而凹槽、方腔缺陷等 则可看成平板与长方体的相割的结果,等等。

图 2 圆台的描述参数

所谓泛圆台类缺陷,是指可以用一类圆台参数 来描述形状的缺陷。一个圆台可以用八个参数来描 述 (如图 2):圆台下半径 Rd,圆台上半径 Rh,圆台高 度 H,圆台底部中心 U的坐标 (x0, y0, z0),圆台朝向 角 (,)。当圆台上 (或下)半径为 0时,圆台退化 为圆锥;当圆台上、下半径相同时,圆台退化为圆柱。 因此,圆台形缺陷可以适用于描述圆锥和圆柱形的 缺陷。圆台与平板相割,不同参数的圆台可以形成 不同的缺陷形状,如图 3所示。在其它边界条件和 初始条件不变的情况下,将形成不同的温度场。平 板外

表面的温度场也会发生变化,因此,在其它边界条件 和初始条件已知的情况下,可以根据平板外表面的 温度来反推缺陷的形状 (参数)。

5 算例及讨论

在这里举一个比较简单的例子。

假设有一平板,平板上敷设一层保温材料。保 温材料因为使用时间较长,出现一圆台形缺陷,如图 4所示。假设已知平板侧温度为 700 ,保温材料侧 空气温度为 20 , 对流换热系数 $h = 20W / (m^2 \cdot)$ 。 平板和保温材料的热物性参数及其它参数如表 1所 示。通过红外热像仪,还可测得稳态时平板表面温 度分布 。。平板表面设定若干个测点,将每个测点 的温度也通过下式进行归一化:

$$\tilde{T}_{0i} = \frac{T_{0i} - T_{\min}}{T_{\max 0} - T_{\min}}$$
(3)

式中, T_{max0} 和 T_{min0} 分别是。中的最高和最低温度; T₀是。中各测点的温度。

图 4 平板与保温层 表 1 平板和保温层的参数

参数	平板	保温层	
尺寸 (mm ×nm ×nm)	500 ×200 ×5	500 ×200 ×20	
密度 (kg/m ³)	7800	576	
导热系数 (W / (m・))	53. 9	0. 19	
比热 (J/(kg·))	460	850	

在这里,假设缺陷为圆柱形。圆柱底部中心 U 的坐标 (x0, y0, z0)和朝向角 (,))已知。现在希望 求出圆柱形缺陷的半径 Rh和高度 H。由于保温层 的厚度和其它尺寸皆已知,因此圆柱形缺陷的半径 Rh和高度 H 均有一个取值范围 $[0, R_{max}]$ 和 [0, H___]。将其归一化,另设 和 为:

则

出

$$F(,) = \bigwedge_{i=1}^{N} (\widetilde{T}_{i}(,) - \widetilde{T}_{0i}(_{0},_{0})) / N$$
(5)

$$\widetilde{\mathbf{T}}_{i}(,) = \frac{\mathbf{T}_{i}(,) - \mathbf{T}_{m in0}(1+)}{\mathbf{T}_{m ax0}(1+) - \mathbf{T}_{m in0}(1+)}$$
$$= \frac{\mathbf{T}_{i}(,)/(1+) - \mathbf{T}_{m in0}}{\mathbf{T}_{m ax0} - \mathbf{T}_{m in0}}$$
(6)

最小,式中,F(,)为目标函数,N为测点数,*T_i*(,))为 和 取不同值时,利用大型商用有限元软件

ANSYS9.0进行 FEM 计算得到的各测点的温度,。 和。为得到平板表面温度分布。时 和 的取 值,为通过红外热像仪测得稳态时平板表面温度 分布。的误差,由于是同一台红外热像仪同时测 得的,因此可认为各测点温度的误差幅度是一样的。

根据 PSO 算法,此时的 \vec{p} 就是(,)。设粒子 数为 10, c1 = c2 = 2, max = 1,最大迭代世代数为 2000,最小误差精度为 0 001。由于 PSO 算法具有 一定的随机性,因此每次的迭代次数并不一定相同, 也不能保证每次都能找到收敛解,但这时可以改变 初始值重试几次,这里的结果也是几次计算的平均 值。

假设当红外热像仪误差 为 0时,反求出 和 。计算误差 按下式计算:

$$= \sqrt{\left(\left(\begin{array}{ccc} - & 0\end{array}\right) / & 0\end{array}\right)^{2} + \left(\left(\begin{array}{ccc} - & 0\end{array}\right) / & 0\end{array}\right)^{2}} / 2 \times 100\%$$
(7)

这里 。和 。为红外热像仪得到平板表面温度分布 。时的取值,分别为 0 5和 0 6。

首先进行单参数的估计,即假定 或 已知,求 出另一个参数;其次同时进行两个参数的估计。总 共进行三次有效计算(即能得到最终结果的计算), 统计的计算结果如表 2,该算法的典型的迭代过程 如图 5所示。

表	2	= 0时	PSO计算结果统计
1.5	~	- U H1	

计算结果统计	单求	单求	同时求和	
平均迭代世代数	29.3	37. 6	53.3	
计算结果	0 4972	0 6027	(0 5065, 0 5955)	
精确值	0 5	0.6	(0, 5, 0, 6)	
误差	0 5%	0 46%	0.75%	

图 5 典型的计算迭代过程

由表 2可见,当进行单个参数估计的时候,平均 的计算次数比较少,而当同时进行多个参数估计时, 平均的计算次数明显增加,这是由于 PSO中的粒子 数增多的原因^[12]。图 5中,(a)表示误差的收敛过 程,上中下三条曲线分别表示每个迭代世代中粒子 的误差的最大值、平均值和最小值,(b)和(c)分别 代表 和 收敛过程。

当红外测量有误差时,设最高 =0 01,计算的 结果如表 3。由表 3可见,平均的计算次数有所增 加,但结果精度仍然保持在 6%以内,表明该算法具 有较好的抗噪性。

表 3 =0.01时 PSO计算结果统计

计算结果统计	单求	单求	同时求和
平均迭代世代数	32 3	38 4	72 7
计算结果	0 5281	0 614	(0 5381, 0 5920)
精确值	0 5	0.6	(0, 5, 0, 6)
误差	5.6%	2 3%	1. 9%

6 结 论

(1)本文讨论了利用一种较新的仿生优化算法 ——粒子群优化算法 (PSO)反演稳态下三维泛圆 台类缺陷的具体参数,取得了令人较为满意的效果, 提供了一条求解有限元反问题的新途径;

(2) PSO 算法可以不用计算梯度,使得有限元

编程和优化算法实现了有效的隔离,因此可以和通 用的有限元软件结合起来,对比较复杂的缺陷识别 都可以采用同一方法进行求解;

(3)由于该算法的随机性,其缺点就是当需要 识别的参数较多、模型较复杂时,计算量较大;

(4)非稳态情况下的缺陷识别还有待进一步研 究。

参考文献:

- [1] 柳春图,陈卫江.缺陷识别反问题的研究状况与若干 进展[J].力学进展,1998,28(3):361-373.
- [2] 于慧,关荣华.红外技术定量诊断设备内部缺陷可行
 性的理论证明[J].红外与激光工程,2002,31(6):229
 232
- [3] 梅林,吴立德,王裕文.一种基于遗传算法的红外无损 检测缺陷的新方法[J].光学学报,2002,22(12):1452
 - 1456
- [4] 梅林,王裕文,薛锦.红外热成像无损检测缺陷的一种 新方法 [J]. 红外与毫米波学报,2000,19(6),457-459.
- [5] 张宇鑫,宋玉普,王登刚.基于遗传算法的混凝土三维
- (上接第 709页)

图 1 原图及初始轮廓线

图 2 算法实现第一阶段结果

图 3 最终检测效果图

5 结 论

本文提出了一种基于图像引力和 Mumford-Shah 模型的快速曲线演化算法,将参数和几何主动轮廓 非稳态温度场反分析 [J]. 计算力学学报, 2004, 21 (3): 338 - 342

- [6] J Kennedy, R C Eberhart Particle swarm optimization
 [A]. Proceedings of IEEE International Conference on Neural Networks 1995, 4: 1942 - 1948.
- [7] R C Eberhart, Y Shi Particle swarm optimization: developments, applications and resources [A]. Proc Congress on Evolutionary Computation [C], 2001.
- [8] 汪镭,吴启迪. 蚁群算法在连续空间寻优问题求解中 的应用 [J]. 控制与决策, 2003, 18(1): 45 - 48.
- [9] 高鹰,谢胜利. 混沌粒子群优化算法 [J]. 计算机科学, 2004, 31 (8): 13 - 15.
- [10] Y Shi, R C Eberhart Parameter selection in particle swarm optimization [A]. Evolutionary programming V II: Proc 7th Ann Conf on Evolutionary Conf [C], 1998: 591 - 600.
- [11] Y Shi, R C Eberhart A modified particle swarm op timizer
 [A]. Proceedings of the IEEE International Conference on Evolutionary Computation [C], 1998: 69 - 73.
- [12] 任庆生,叶中行,曾进.进化算法的收敛速度 [J].上海 交通大学学报,1999,33(6):671-673.

线模型进行了有效结合。图像引力的引入解决了参数主动轮廓线模型对初始轮廓线位置和形状的限制,使模型能够在更大的范围内捕捉图像的特征;而以参数主动轮廓线得到的粗糙目标轮廓作为初始的零水平集曲线,再基于 Mumford-Shah模型的窄带解法,进行曲线演化,避免了水平集方法计算复杂、耗时等问题。通过实例研究表明,本文所提出的方法能快速、准确的收敛到物体边缘。

参考文献:

- James S D, Nicholas A. Medical image analysis progress over two decades and the challenges ahcad [J]. IEEE Trans PAM I, 2002, 22 (1): 85 - 106
- [2] L D Cohen Note on Active Contour Models and balloons
 [J]. CVGP: mage Understanding, 1991, 53 (2): 211 218
- [3] Chan F T, Vese L. Active contours without edges [J].
 IEEE Transactions on Image Processing, 2001, 10 (2): 266 - 277.
- [4] Sylvie Teboul, Laure B lanc-F 'eraud, Gilles Aubert, et al Variational Approach for Edge-Preserving Regularization Using Coupled PDE 's [J]. IEEE Transactions on Image Processing, 1998, 7 (3): 387 - 397.
- [5] Chopp D L. Computing minimal surfaces via level set curvature flow [J]. Journal of Computing Physics, 1993, 106: 77 - 91.