文章编号:1001-5078(2009)04-0367-05

·综述与评论·

双色碲镉汞红外焦平面探测器发展现状

王成刚, 孙浩, 李敬国, 朱西安 (华北光电技术研究所, 北京 100015)

摘 要:主要介绍了双色碲镉汞红外焦平面阵列的应用需求和国外发展现状,对其工作模式、器件结构、器件制备的关键工艺技术、双色读出电结构进行了阐述说明。
关键词:碲镉汞;红外焦平面阵列;双色探测器;分子束外延;台面刻蚀
中图分类号:TN215 文献标识码:A

Trends in Two-color Infrared Focal Plane Detectors of MCT

WANG Cheng-gang, SUN Hao, LI Jing-guo, ZHU Xi-an (North China Research Institute of Electro-optics, Beijing 100015, China)

Abstract: This paper gives the state of application and development of double-color detector of MCT, further more, gives the work mode, structure, important technology of process of detector, the structure of read out integrate circuit. Key words: MCT; IRFPA; dual band detector; MBE; mesa-etch

1 引 言

随着红外技术的不断发展,先进的红外系统要 求探测器具有更高的探测识别能力、具备双/多色同 时探测能力、更加智能化,因此三代红外焦平面探测 器的主要标志是:双/多色探测、超大规模凝视面阵、 低成本制备等。其中,双/多色是三代器件的主要发 展方向。碲镉汞(HgCdTe,MCT)材料由于具有量子 效率高、可高温工作、响应波长随组份变化连续可 调、不同组分晶格常数变化不大等显著优点,成为三 代红外焦平面探测器件发展的重点之一^[1]。

双色红外探测器是三代红外探测器发展方向之一,能对双波段辐射信息进行处理,大大提高了系统 抗干扰和目标识别能力,应用于导弹预警、红外侦 察、成像制导等多种领域。国际上欧美等国家起步 较早,于20世纪80年代末研制出双波段探测器,并 很快应用于武器系统。早期双色结构多为镶嵌式, 随着探测器技术向更大规模焦平面阵列(FPA)方向 发展,也要求双色器件实现大阵列、焦平面结构以及 数字化,而只有叠层式工艺才能实现这一目标,即单 个像元能探测两个不同波段,当与先进的多色信息 处理算法相结合时,双色红外探测器与单色探测器 相比可以进一步提高探测灵敏度。

2 双色 MCT 红外焦平面探测器工作方式

一般双色 MCT 探测器有两种探测模式:顺序探测模式和同时探测模式^[2]。

顺序探测模式:探测器开关时间可以很短,在微 秒量级,通过在短波和长波方式之间的快速开关可 以进行缓慢变化目标的探测。其优点如下:

●像单色混合 FPA 一样,只有一个铟柱和每个 单元相连;

● 与现有硅读出电路(ROIC)芯片兼容,适于常 规的背照射工作;

●每个单元只须一个读出模块,可以为高性能 的读出提供空间;

简单的结构可以使单元更小(<40μm)、阵列更大;

•在两个波段可以得到近乎 100% 的填充 因子。

顺序探测模式的缺点如下:

它的结构形式不允许对每个光电二极管单独优 选偏压值,在长波探测器中实际上有较大的短波串

收稿日期:2008-09-05;修订日期:2008-11-06

作者简介:王成刚(1977 -)男,工程师,硕士,主要从事碲镉汞 红外焦平面探测器技术研究。E-mail:wcgzxy77@126.com

扰(所以器件形成的关键步骤是保证原位 P 型砷掺 杂层有好的结构和电学性能,以防止内部增益产生 光谱串扰)。顺序探测模式截面图如图1所示。

同时探测模式的优点如下:

 可以对双波段实现时间上同时和空间上同步 探测;

如果不考虑器件设计和材料生长只考虑能带的话,那么对每个二极管选取适当的偏压,内部增益就会被有效抑制;

•由于一般长波红外辐射比在中波(如10~ 12μm和3~5μm)强度高,长波积分时间也只能很 短,这样信号积分的同时性就不可能真正发生,这时 长波小的填充因子就对背景产生的电荷减少有利, 也利于信号积分的同时性。

同时探测模式截面图如图2所示。

图 2 同时探测模式截面图

同时探测模式的缺点如下:

 这种台面结构为了进行金属连接而变得更 复杂;

•每个单元须加一个读出电路模块,造成 ROIC 设计时更加复杂;

为了给下面埋层提供电学接触而使结面积减少,这样长波填充因子会减少。

3 双色 MCT 红外焦平面探测器结构与性能

二代 MCT 探测器阵列技术在 20 世纪 70 年代 后期开始发展起来,在以后的十年里达到了量产的 阶段,第一个混成结构演示是在 70 年代中期,探测 器与 ROIC 通过铟柱互连,这样的结构可以对探测器和 ROIC 单独进行优化、具有近乎 100% 的填充因子的优点;混成结构也可用环孔工艺制造,即在探测器制造前把探测器和 ROIC 芯片黏结在一起形成一个独立芯片,环孔是由离子铣刻蚀而成,这种结构提供了比倒装互连混成结构更加稳固的机械和热学特性。

在以上两种单色混成结构基础上,发展出了不同的双色探测器结构,由于单片式双色红外焦平面 探测器可以避免使用分立阵列而存在的空间对准和 时间寄存现象,同时大大简化了光学设计、减少了尺 寸、质量和功耗并且降低了成本,欧美很多公司和研 究机构对此作了大量的研究工作。

下面介绍几种比较典型的双色红外焦平面探测器阵列结构。

美国 DRS 公司在高密度垂直集成光电二极管 (HDVIP)结构基础上发展了有自己特色的双色结 构^[3],如图 3 所示,是由纵向上两个单波段的 HgCdTe 单色焦平面芯片与双色 Si ROIC 黏合而成。 同 ROIC 的接触是通过 MCT 刻蚀到硅上的一些通 路而实现,二极管的 n⁺/n⁻ 区通过刻蚀过程本身和 随后的离子注入工艺形成。已制作出间距为 50μm 的 MW/MW 和 MW/LW 红外 320 × 240 元焦平面阵 列,由 480 × 640 元读出集成电路同时读出。这种结 构的双色探测器芯片各个波段的探测与单色红外焦 平面完全一样,所以具有较好的性能。

ROIC bond pads 图 3 美国 DRS 公司用 HDVIP 工艺制 制备的双色 MCT IRFPA 示意图

美国雷神(Raytheon Vision Systems)公司利用 液相外延或气相外延技术在碲锌镉衬底上生长 n – p – n三层掺杂碲镉汞薄膜材料,发展出各向异性干 法刻蚀技术制造微台面,刻蚀深度达到 12 μ m,先后 研制出了中波 – 中波、中波 – 长波和长波 – 长波三 种双色器件,阵列规模有 256 × 256,640 × 480, 1280 × 720,像元尺寸为 20 μ m^[4]。首次演示最简单 的双色碲镉汞红外探测器如图 4 所示,它是由 n – p – n两个背靠背二极管组成,表面只有一个电极,通 过改变偏置电压的极性来改变探测波段;在光敏元上 再加一个电极,就可以同时探测两个波段光信号,如 图 5 所示,1998 年美国 Raytheon 公司 Rajavel 报道了 这种双色探测器,当时像元尺寸 50µm,截止波长为 4.0µm 和4.5µm。2005 年报道的阵列规模为1280 × 720 叠层红外双色焦平面器件是当前最大规模 MCT 双色器件,已用于美国陆军第三代战术红外系统。

图 4 美国 Raytheon 公司制备的双色 MCT IRFPA 截面示意图

图 5 美国 Raytheon 公司制备的双色 MCT IRFPA 截面示意图

美国洛克韦尔/波音(Rockwell/Boeing)公司把 单色用的双层异质结 DLPH(double layer planar heterostructure)平面技术,推广到双色结构 SUMIT (simultaneous unipolar multispectral integrated technology),SUMIT 结构是用 MBE 生长五层 MCT 外延 层,用湿法腐蚀实现漏出下层短波碲镉汞薄膜材料, 然后用等离子刻蚀工艺进行像素之间的光学隔离, 以减少串音,器件的核心基于 p-on-n 结构,P 型 区采用 As 离子注入制备,这样在不同层材料上制备 出 p-n 结(如图 6 所示),这种结构由于两个波段 的光电二极管是同方向的,其两个光信号不需要分 离,只要在每个读出单元内包含两个分立的单波段 注入读出结构,所以它的读出电路结构相对简单。 制备出的中波 - 中波双色 128 × 128 凝视型碲镉汞 红外焦平面探测器,其波长偏短层组分为0.45,厚 度为8~10µm;阻挡层组分为0.55,厚度为1.3µm; 波长偏长层组分为 0.32, 厚度为 3.5~4 µm; Cap 层 组分为0.38,厚度为0.3µm,像元尺寸40µm,截止 波长为3.9和5.9µm^[5]。

图 6 美国 Rockwell 公司制备的双色 MCT IRFPA 截面示意图

法国 LETI LIR 实验室 2000 年采用分子束外延 和台面技术,设计和制造了 n-p-p-p-n 型结构 的碲镉汞中波 - 中波双色 128 × 128 红外焦平面探 测器(如图7所示),截止波长3.1µm/5.0µm,中心 距50µm,这种结构的中波光电二极管为注入平面 结,而较短波长光电二极管为原位台面结,这种结构 具有高的量子效率、小的光谱串音和高的占空比。 最近从 LETI/Sofradir 联合实验室(Defir)的报道得 知,他们的双色技术有了更新的进展^[6],发展出了 两种类型的双色探测器结构,如图8、9所示,图9结 构已经制备出了 256 × 256 (中心距 25 μm)、320 × 256(中心距 30µm)两种阵列规格双色探测器;图 9 所示的这种伪平面工艺最大的优点就在于不用进行 难度很大的深槽刻蚀隔离,只要刻蚀3~6μm 深即 可,所用刻蚀手段是 ICP 刻蚀结合轻微湿法腐蚀,能 避免这种深槽刻蚀对于长波材料来说会有很大的优 势,这种结构已发展出了中波-长波的256×256 阵 列规格双色探测器,截至波长为4.9µm 和10.0µm, 中心距 30µm。

图9 伪平面双能带像元平面和截面图

德国 AIM 公司利用 MCT 液相外延技术,研制 出了一种双色焦平面阵列探测器组件,这也说明了 利用 AIM 公司确立的 MCT 液相外延技术来制作这 种双色器件是可行的。德国 AIM 公司在三层碲镉 汞液相外延薄膜材料上,利用台面刻蚀工艺技术,将 上层碲镉汞薄膜材料隔离成岛,露出下层碲镉汞薄 膜材料,采用离子注入成结工艺,在两层材料上同时 制备出p-n结(如图 10 所示),再进行电极引出和 倒装互连,研制出中波 - 中波双色 192 × 192^[7]。由 于液相外延技术存在的一些技术难点,在 2003 年以 后德国 AIM 公司将双色探测器研制重点放在了量 子阱和超晶格的研制上。

图 10 德国 AIM 公司制备的双色 MCT IRFPA 截面示意图

BAE(英国、美国)系统公司采用 MOCVD 多层 碲镉汞外延方法,利用微台面技术,设计和制造了图 11 所示的 p-n-n-n-p型结构的双色 64×64 凝 视型碲镉汞红外焦平面探测器^[8],像元尺寸为 75μm,截止波长为4.3μm 和10.3μm。

图 11 英国 BAE 系统公司制备的双色 MCT IRFPA 截面示意图 英国 Selex 公司的双色探测器以中波 - 长波

640×512、短波-中波320 ×256器件为主,已经成为 货架产品向外提供。

各公司双色 MCT IRF-PA 探测器性能参数表如表 1 所示。

4 双色 MCT 红外焦平面探 测器关键制备技术

1) 双色 MCT 红外焦平 面探测器材料生长技术

最开始是用体晶生长技 术来制备探测器材料,70年 代初期发展起来的液相外延 (LPE)技术在经过20多年 才发展成熟,在90年代初替 代了体晶生长技术成为 MCT 探测器制备的关键技 术之一,用于一代和二代探 测器大规模生产,但是 LPE 技术由于自身的一些特点(如工艺温度高等)不适 合三代探测器所需各种先进结构的要求。这些都为 分子束外延(MBE)和金属有机物化物气相沉积 (MOCVD)技术的发展提供了更大的舞台,这两种技 术在80年代初期发展起来,由于MBE的Hg源特殊 设计成功的克服了 MOCVD 在生长时Hg的低黏附 系数^[9],而且 MBE 的生长温度不到 200℃,而 MOCVD 的生长温度高达 350℃,在这种高温下Hg 空位的形成使得其 P 型层的掺杂非常难于控制,因 此目前 MBE 技术成为多色红外探测器结构多层材 料生长的首选技术。

在 MBE 外延 MCT 衬底的选择上,主要的有 CdZnTe,Si,Ge,GaAs,Sapphire,InSb 等几种:CdZnTe 与 MCT 有好的晶格匹配但是也存在不足, 如面积 小、成本高、与硅 ROIC 之间大的热失配等,因此在 超大规格 FPA(1K×1K,2K×2K 等)材料制备上 CdZnTe 就不适合作为衬底材料;Ge 作为一种可供 选择的衬底材料,主要是因为Si材料在外延前对氧 化层的处理不易,其与硅有着近似的优点,才选择 Ge 作为衬底;Si 与 MCT 晶格失配达到 19%,所以在 Si 上外延 MCT 前要先外延 CdTe 等材料的复合衬底 结构,尽管如此,但在 FPA 技术上 Si 衬底具有非常 大的吸引力,这不仅是因为其成本低,而是因为与硅 ROIC 不存在热失配,这样可以制备更大规格的焦平 面芯片,这种结构将具有很好的长时间热循环可靠 性。综合来看在更大规格 FPA 制备中, Si 是目前 MCT 外延首选的衬底材料。

表1 各公司双色 MCT IRFPA 探测器性能参数表

性能参数 公司	探测 波段	光敏 元数	像元尺寸/ 像元间距 /μm×μm	截止 波段 /μm	NETD ∕mK	有效 像元 /%	器件工作 温度/K
SOFRADIR/LETI	MW/MW	320 × 256	间距 30 × 30	3.2/5.2	15	>99.9	77
	SW/MW			1.0/3.0			
AIM	MW/MW	192 × 192	间距 56 × 56	3.4/4.0 4.2/5.0	< 30 < 25		
RVS	MW/LW	640×480	20×20	5.5/10.5	20 <25	>98 >97	78
	MW/LW	1280×720	20×20				
DRS	MW/LW	320×240	间距 50 × 50	5.2/10.2	9 23	97.1 96.3	- 77
	MW/MW	320×240	间距 50 × 50	4.2/5.2	18.1 8	99.4 99.6	
Rockwell	MW/MW	128×128	40×40	3.9/5.9			
BAE	MW/LW	64×64	间距 75 × 75	4.3/10.3			
Selex	MW/LW	640×512	间距 24 × 24	5.0/10.0	29.6	> 99	80
	SW/MW	320 × 256		1.65/4.05	< 22		90

2) 双色 MCT 红外焦平面探测器深台面蚀刻 技术

双色 MCT 红外焦平面探测器是由多层外延膜 构成的台面叠层结构,要实现双色探测,那么就必须 对每个像元进行台面隔离,这种像元台面隔离是由 蚀刻工艺完成,台面隔离深度一般要大于 10μm,蚀 刻工艺难度很大,不但要求高的深宽比,而且损伤要 降到最低,因此台面蚀刻就成了双色探测器制备的 关键工艺技术。

现有的台面蚀刻有三种方式:湿法腐蚀、干法刻 蚀、干法与湿法结合蚀刻的工艺。湿法腐蚀虽有利 于表面损伤的减少,但是这种各向同性蚀刻方法会 严重降低 FPA 的填充因子;与传统的湿法腐蚀相 比,干法等离子刻蚀对台面的形成有很多优点,可以 制备出高填充因子光滑台面、且均匀性好,众所周知 这种工艺容易造成材料损伤,需要后续热处理工艺 来消除这种影响。现在发展出了微波电子回旋共振 (ECR)和电感耦合等离子(ICP)^[10]两种各向异性 干法刻蚀工艺,在今天来看,ICP 是在 MCT 外延层 上获得材料低损伤和深槽的最佳方法。图12 是 Sofradia 公司做的蚀刻工艺对比情况。

(a)湿法腐蚀
(b)干、湿法结合蚀刻
(c)等离子体刻蚀
图 12 50μm 中心距光电二极管阵列台面蚀刻 SEM 图
3)双色 MCT 红外焦平面探测器读出电路设计

5) 从巴 MCI 红介黑干面抹砌备陕山电路区印 技术

双色探测器读出电路的设计一般分为两种情况:串行设计和并行设计。

串行设计是在一个帧周期内,只对一个波段的 信号积分、读出,而在下一个帧周期内,对另一个波 段的信号进行积分、读出。两个波段的探测延迟为 一个帧周期。一般情况下,可以通过改变探测器的 偏置使探测器工作在串行模式。

并行设计是可以同时对两个波段的信号进行积 分探测,但双色探测器和 ROIC 要有两个铟柱互联, 这样使得像素的大小和成本都高于串行设计的方式。

鉴于并行设计需要两个铟柱互联,因此,一般将 并行设计和串行设计结合起来,进行电路设计,即: 串行积分并行读出。

另一种设计是采用 TDM (time division multiplexed)方法^[11],雷神公司就采用了这种设计结构。 也就是说,双色信号共享一个积分电容,每次积分一 个波段的信号;给每个波段分存储电容,以存储电荷 信号,另外一个作用就是对多次积分信号进行平均。 其特点是,减小并行设计的复杂性,同时减小了像素 单元的尺寸。

双色读出电路设计的难点主要在时序设计、双 色信号之间的串扰和信号读出的质量等方面。这些 方面需在双色读出电路设计中着重考虑。

5 结 论

文中总结了双色 MCT 红外焦平面探测器工作 模式,并详细介绍了双色 MCT 红外焦平面探测器国 外发展现状,以及各公司典型 MCT 双色结构及特 点,在此基础上介绍了双色 MCT 红外焦平面探测器 关键制备技术。在未来的红外探测应用中,先进的 红外系统对多色探测有很大的需求,需要多色识别、 灵敏度更高、阵列规模更大等,以便达到更高的目标 识别与分辨能力,将在导弹预警、红外侦察、成像制 导、地球和行星遥感和天文学上发挥更大作用。

参考文献:

- C Arnold. Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays [J]. Opt. Eng., 2003,42(1):30-46.
- [2] A Rogalski. Dual-band infrared focal plane arrays [J]. Proc. SPIE,2000,4340:1-14.
- [3] Antoni Rogalski. Third-generation infrared photon detectors[J]. Opt. Eng. ,2003,42(12):3498 - 3516.
- [4] D F King, et al. 3rd generation 1280 × 720 FPA development status at Raytheon vision systems [J]. SPIE, 2006, 5 (17):6206W.
- L A Almeida. Development and fabrication of two-color mid- and short-wavelength infrared simultaneous unipolar multispectral integrated technology focal-plane arrays[J].
 J. Electron. Mater. ,2002,30:669 - 676.
- G Destefanis, Ballet P, Baylet J, et al. Bi-color and dualband HgCdTe infrared focal plane arrays at DEFIR[J].
 Proc. SPIE, 2006;6206 - 1 - 62060 - 15.
- [7] W Cabanski', R Breiter'. Status of 3rd Gen focal plane array IR detection modules at AIM [J]. Proc. SPIE, 2003, 5074:72 - 82.
- [8] M B Reine. Simultaneous MW/LW dual-band MOCVD HgCdTe 64 × 64 FPAs[C]//Proceedings of SPIE, 1998: 3379.
- [9] K Adamiec. Molecular beam epitaxy of HgCdTe, in narrow-gap II-VI compounds for optoelectronic and electromagnetic applications [M]. London: Chapman & Hall, 1997:97-130.
- [10] V Srivastav. Overview of etching technologies used for HgCdTe[J]. Opto-Electronics Review, 2005, 13 (3): 197-211.
- [11] IRFPA ROIC with dual TDM reset integrators and subframe averaging function per unit cell[P]. U S Patent 6, 885,002 B1, Inventor, James A. etc.