文章编号:1001-5078(2011)02-0150-05

·激光器技术·

1064 nm 脉冲激光前置放大器研究

果 鑫,刘丰年,李 娜,孔令芳,李长云 (湖南工业大学计算机与通信学院,湖南 株洲 412008)

摘 要:采用级联波分复用的泵浦耦合方式,对平均功率 0.5 mW、脉宽 20 ns、重复频率 50 kHz 的小信号纳秒脉冲进行单模放大,采用分段泵浦技术,优化两级泵浦功率值,获得了平均功率 26 mW,信噪比 25 dB的脉冲输出,相应增益为 17.1 dB。为高功率放大提供了性能优良的脉 冲种子源。

Experimental research on preamplifier for high power Yb-doped fiber pulse laser amplification

GUO Xin, LIU Feng-nian, LI Na, KONG Ling-fang, LI Chang-yun

(Institute of Computer and Communication, Hunan University of technology, Zhuzhou 412008, China)

Abstract: By using cascaded Wavelength Division Multiplexing (WDM), a fiber-based amplification of a fiber-pigtailed-pulsed diode laser is experimentally demonstrated. For a laser with 50 kHz repetition rate, 20 ns pulse duration and 0.5 mW average power, the amplified output power up to 26 mW is obtained, which has a high signal to noise ratio of 25 dB. The corresponding gain is 17.1 dB. It offers a good pulse laser seed for high power laser amplifier. **Key words**:cascaded WDM;ytterbium-doped amplifiers;signal to noise ratio;gain of the signal

1 引 言

普通的脉冲光纤激光器输出的平均功率一般为 毫瓦(mW)量级,因此要获得高平均功率脉冲输出, 必须对脉冲激光器输出的种子脉冲进行放大。对于 低占空比(如~1/1000 或更小)的脉冲放大,单级放 大器所提供的增益一般在13 dB 以下。要实现高功 率低占空比脉冲输出最有效的方式之一就是级联多 级放大器^[1-8]。而且通常是在单模放大的基础上级 联双包层放大器^[1-5,7-8]。这种级联多级放大器的 放大方式在保证得到足够增益的同时,还需要确保 光路各元器件的安全。为此,在实现脉冲激光放大 器全光纤化的进程中解决后向泵浦光与信号光对整 个系统的泵源及其他光器件造成的危害是目前研究 的重要课题^[9]。本文通过对 1064 nm 的平均功率 0.5 mW、脉宽 20 ns 以及重复频率 50 kHz 的纳秒脉 冲进行两级单模放大。获得了平均功率 26 mW,信 噪比 25 dB 的脉冲输出,相应增益 17.1 dB。为了有效隔离后向信号光与泵浦光返回泵浦源,泵浦光耦 合采取级联波分复用器(WDM)的方式,实验采用对 掺镱(Yb)光纤进行分段泵浦的方案,确保输出脉冲 质量的同时,提高输出功率,采取了有效措施优化两级泵浦源的功率,该单模放大系统为后级双包层功 率放大提供了性能优良的种子源。下面将从泵浦耦 合方式、分段泵浦的实验结构、实验光谱分析及结果 等方面进行阐述。

2 级联 WDM 的泵浦光耦合方式 在进行单模掺 Yb 光纤激光器或放大器的实验

收稿日期:2010-08-04;修订日期:2010-09-08

基金项目:国家自然科学基金项目(No. 60773110);湖南工业大 学博士启动基金资助。

作者简介:果 鑫(1974 -),男,助教,学士,主要研究方向为光 纤激光器/放大器关键技术和激光相干合成技术。E-mail:lfnjx@yahoo.com.cn

中,因泵浦光(980 nm 左右)波长与信号光波长 (1000 nm 左右)相隔较近。对于隔离度为 20 dB 左 右的普通拉锥形 WDM 来说,光路中的弱反馈很容易 对泵浦二极管(LD)产生严重危害。尤其是在脉冲放 大实验中,LD 和 WDM 被烧毁的现象时有发生。基 于以上情况,本文在实验中采用两个隔离度都在 20 dB 左右的拉锥形 WDM 级联,因此对 980/1060 nm 隔离度可达 40 dB 以上。图 1 是该泵浦耦合方式示 意。其中两个 WDM 都是国产拉锥型,工作波长在 980 nm & 1060 nm,工作温度在 -40 ~ 85℃。承受最 大平均功率为 300 nW;对 980 nm 和 1060 nm 隔离度 分别为 20.9 dB 和 23.5 dB。泵浦光通过 WDM₁ 和 WDM₂ 耦合进光路,尽管耦合效率上比用一个 WDM 要低,但是对反馈回的泵浦光和信号光隔离度高达 40 dB 以上,有效保护了泵浦源的安全。

图 1 级联 WDM 泵浦耦合方式图 Fig. 1 pump coupling via cascaded WDMs

图 2 是采用 976 nm 单模尾纤输出的 LD 作泵 浦源,对两种泵浦耦合方式的耦合效率进行实验测 量的结果比较。

从图 2 可以得到:通过 WDM₁ 后,泵浦光的耦 合效率在 85% 以上,经过级联 WDM 后,对泵浦光耦 合效率在 70% 以上。将该耦合系统用在后面所述 的单模放大结构中,整个系统能够连续工作 4 h 以 上而无光器件的损害。

3 对增益光纤长度的优化及分段泵浦技术

已有理论和实验证明,对于前后腔镜都是宽带 反射镜的光纤激光器,其激射波长与光纤的掺杂浓 度和光纤长度有密切关系。从光纤激光器的基本理 论出发,能够导出激光波长与光纤长度、掺杂浓度的 关系^[10]:

$$1 + \frac{Z_1}{Z_u} \exp\left(\frac{E_{ul} - hc\lambda^{-1}}{KT}\right) =$$
$$\exp\left\{LN_t\sigma_{pa} - \ln\left[\frac{\sigma_{pa}}{(\pi - hc\lambda^{-1})}\frac{I_p(0)}{L}\right] - \frac{I_p(0)}{L}\right\} \quad (1)$$

【 I_{pe} $I(\sigma_{pe} + \sigma_{pa})$ I_{c}] I_{c}] 其中, Z_{u} 和 Z_{1} 分别为激光上下两能级族的配分函 数; E_{ul} 为激光上下能级因斯塔克分裂而成的两能级 族中最低能级之差;K 为玻耳兹曼常数;T 为温度;h为普朗克常数;c 为光速; λ 为波长; σ_{pa} 表示泵浦波 长的吸收截面; σ_{pe} 表示泵浦波长的辐射截面; $I_{p}(0)$ 为入纤泵浦光强; I_{c} 为饱和光强;N 为光纤掺杂浓 度;L 为光纤长度。从上式可以看出在掺 Yb³⁺光纤 激光器中,当掺杂浓度一定的情况下,L 的增大将使 得更长波长的激光输出;而光纤长度一定时,更高的 掺杂浓度同样也使激射波长增大。这点在实验上也 已经得到了验证。

本文中,我们利用型号为 SM - YSF - HI 的单模 掺镱光纤为增益介质,在 975 nm 波长处吸收系数为 250 dB/m,纤芯直径 6 µm,数值孔径 0.11。首先研 究了 3 m,5 m 和 8 m 长度该光纤的增益特性。实验 中泵浦光功率都为 180 mW。从图 3 可以看出,当掺 杂浓度一定时,随着光纤长度增大,掺 Yb 光纤的增 益峰逐渐向长波长漂移。虽然 8 m 长度的掺 Yb 光 纤增益谱图比较平坦,且在短波长处 ASE 噪声明显 低于 3 m 和 5 m 长度的光纤,但是由于 8 m 光纤长度 过长,造成了对 ASE 的二次吸收,因此整体增益水平 偏低。下面我们将 8 m 长度的光纤进行分段泵浦。

4 分段泵浦单模放大器的种子源

4.1 实验结构

如图 4 所示,将两个单模放大器级联,构成了高 功率脉冲放大的种子源。实质是对 8 m 长度的单模 掺镱光纤进行分段泵浦。在选择光纤长度时,考虑到 一级放大的信号输入第二级,因此第二级放大器最佳 光纤长度要比 3 m 长,故后段用了 5 m 长度的光纤。

图 4 分段泵浦单模放大器的预放大结构 Fig. 4 preamplifier with scheme of pump in sectionnalization

4.2 ASE 光谱特性分析

(a)3 m-long Yb-doped SM fiber pumped at different level

(1)5 m 大儿纤住个问永伸切举的 ASE 盲

Fig. 5 the ASE spectra of 3 m-ling, 5 m-ling SM fiber pumped at different level and dual-stage SM preamplifier

图 5(a)、图 5(b)给出了单级放大时 3 m 和 5 m 的 ASE 谱。它们的增益峰值都在 1030 ~ 1040 nm 之间,而在信号光波长 1064 nm 处的增益水平较低。 从图 5(c)可以看出,将两级单模放大器级联后,整 个系统的增益峰值在 1040 ~ 1050 nm,且在 1064 nm 处增益得到显著提高,为提高放大信号输出功率打 下基础。

4.3 分段泵浦的两级泵浦功率的优化

根据掺镱光纤放大器的基础理论,对给定长度的增益光纤,因掺 Yb 放大器的增益饱和效应,过高的泵浦功率会导致 ASE 功率的积累,并进一步放大^[11],使得输出信噪比下降。为了优化两级泵浦功率的值,我们将两级泵浦电压从 100 mV 开始变化,一级 LD 分别调到 150,200,250,300,350,400 mV, 二级分别调到 150,200,250,300,350,400,450, 500 mV,在以上所加电压下进行放大。放大输出的 功率情况与两级 LD 所加电压对应的关系如表 1 所示。

表1 放大输出的功率值与两级 LD 所加电压对应的关系

一级二级	100 mV	150 mV	200 mV	250 mV	300 mV	350 mV	400 mV
100 mV	0.2 mW	0.3 mW	0.6 mW	1.0 mW	1.6 mW	2.3 mW	3.6 mW
150 mV	0.4 mW	0.7 mW	1.3 mW	1.9 mW	3.1 mW	4.3 mW	6.7 mW
200 mV	0.8 mW	1.5 mW	2.6 mW	3.7 mW	5.8 mW	7.6 mW	10.7 mW
250 mV	1.7 mW	2.9 mW	4.6 mW	6.7 mW	9.7 mW	12.7 mW	16.2 mW
300 mV	3.3 mW	5.1 mW	7.9 mW	11.0 mW	14.4 mW	18.3 mW	23.1 mW
350 mV	5.5 mW	8.4 mW	12.2 mW	16.4 mW	26.6 mW	25.3 mW	30.1 mW
400 mV	8.1 mW	12.2 mW	17.7 mW	23.0 mW	27.7 mW	33.0 mW	37.8 mW
450 mV	12.3 mW	16.8 mW	23.7 mW	30 mW	35.6 mW	41.7 mW	47.1 mW
500 mV	16.2 mW	22.1 mW	30 mW	37.4 mW	43.8 mW	50.0 mW	56.0 mW

实验表明,在带填充颜色的功率值所处表格位置以上的输出信噪比都在 25 dB 以上,功率超过 30 mW 输出的时候,放大输出的信噪比将在 25 dB 以下。从输出功率和信号质量考虑,我们选用了一个值(26.6 mW),如表 1 中所示。并将该值与相邻

的泵浦功率下的光谱图进行比较,结果如图 6 所示。 通过比较可以得到,保证输出信号信噪比在 25 dB 以上,输出功率在 20~27 mW 范围内,两级 LD 的泵 浦电压值分别为 300 mV(前级)、350 mV(后级)时, 输出脉冲的信噪比优于其他泵浦条件的输出光谱, 如图 6 所示。泵浦功率略高于此值时,如电压值分 别为 350,350 mV 和 250,400 mV,光谱图显示放大 后的信号质量开始下降。

(350 mV,350 mV)的输出光谱比较

Fig. 6 output spectrums of different electric voltages toted in LDs

5 实验结果及分析

图7 是整个前置放大的种子激光器、两个泵源 都开启时的 ASE 和放大后的光谱比较。图8 是种 子光脉冲形状和放大输出的脉冲形状。从图7 和图 8 看出,放大结果保持了输入光谱的优良特性,信号 光在 1030 nm 波段对 ASE 的抑制作用达 15 dB。信 噪比由 35 dB 降为 25 dB。基本满足进一步放大的 需要。同时因前置放大输入为小信号脉冲,由脉冲 放大理论可知^[12]:脉冲前后沿增益相等,形状未发 生畸变。实验结果与理论分析基本吻合。

图 7 整个前置放大的种子激光器、两个泵源都开启时的 ASE 和放大后的光谱比较

Fig. 7 the cascaded preamplifier spectra

time 50 ns/D

图 8 放大前后的脉冲形状比较:上:放大前;下:放大后

Fig. 8 $\,$ seed pulse temporal (upper) and amplified pulse temporal (lower) $\,$

图9给出了该前置放大系统的稳定性测试结 果。在4h内输出功率的浮动小于1mW,这说明了 采用级联 WDM 的泵浦光耦合方式确保了系统元器 件的安全。

最后从前置放大器输出的平均功率为 26.1 mW,脉宽20 ns,重复频率50 kHz,系统总的增 益为17.1 dB。这一结果远高于仅利用3 m 或5 m 的光纤单级放大得到输出功率(12 mW 左右)。实 验研究表明:这种级联方式实质是将高掺杂光纤进 行分段泵浦,提高放大各级的隔离度,有效抑制前级 的自发辐射,使放大器输出的脉冲功率增大的同时, 抑制了脉冲放大的噪声。

前面讨论中考虑到后向泵浦时较高的输出功率 影响后向泵浦的 WDM 正常工作。一级放大的输出 功率在6 mW 左右,峰值功率约为6 W,功率较低, 因此可以在一级单模放大时采用后向泵浦,将进一 步提高一级的输出功率,并有效抑制 ASE,如图 10 所示。这将在后续的研究中进行实验。

图 10 第一级后向泵浦的级联单模放大器的预放大结构 Fig. 10 scheme of the preamplifier employed backward pump in first stage

6 总 结

本文对平均功率0.5 mW、脉宽20 ns 以及重复 频率50 kHz 的种子激光进行单模预放大。实验中 采用了级联两个单模放大器的 MOPA 方案。并在 泵浦光耦合方式、分段泵浦技术、两级泵浦功率值的 优化以及光谱特性等方面做了研究。通过级联 WDM 有效保护了 LD;通过分段泵浦方式,提高各级 放大器间的隔离度,有效抑制自发辐射,并提高增益 介质的反转粒子数浓度;通过优化两极泵浦功率值, 使放大系统对 ASE 的抑制作用在 1030 nm 处达 15 dB;整个系统在连续工作4 h 的情况下,功率浮 动小于1 mW。前置放大获得了 17.1 dB 的增益。 为高功率脉冲激光放大提供了性能优良的种子源。

参考文献:

- D Taverner, D J Richardson, et al. 158 mJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier [J]. Optics Letters, 1997, 22 (6): 378 380.
- [2] C J S de Matos, J R Taylor. Multi-kilowatt, all-fiber integrated chirped – pulse amplification system yielding 40 × pulse compression using air-core fiber and conventional erbium-doped fiber amplifier [J]. Optics Express, 2004, 12(3):405-409.
- P Dupriez, A Piper, et al. 321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source [C]. OFC, 2005, PDP3.
- [4] P Dupriez, A Piper, et al. High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm[J]. IEEE Photonics Technology Letters, 2006, 18(9):1013-1015.

- [5] Christophe Codemard, Carl Farrell, et al. Millijoule, highpeak power, narrow-linewidth, sub – hundred nanosecond pulsed fibre master-wscillator power-amplifier at 1.55 μm [J]. C. R. Physique, 2006, 7:170 – 176.
- [6] R E Kennedy, A B Rulkov, et al. High-peak-power femtosecond pulse compression with polarization-maintaining ytterbiumdoped fiber amplification [J]. Optics Letters, 2007,32(10):1199-1201.
- [7] Ccheng Mingyuan, Chang Yuchung, Gal Vanguskas A. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200 μm core highly multimode Yb-doped fiber amplifiers [J]. Optics Letters, 2005,30(4):358-360.
- [8] Almantas Galvanauskas, MingYuan Cheng, et al. High peak power pulse amplification in large-core Yb-doped fiber amplifiers [J]. Quantum Electronics, 2007, 13 (3): 559 - 566.
- [9] W Torruellas, Y Chen. High peak power ytterbium-doped fiber amplifiers [J]. SPIE, Fiber Lasers Ⅲ: Technology, Systems, and Applications, 2006,6102:61020N.
- [10] Fu Shenggui. Theory and experimental research on high power double-cladding fiber laser[D]. Tianjin:Nankai U-niversity,2005. (in Chinese)
 付圣贵. 高功率双包层光纤激光器的理论与实验研究
 [D]. 天津:南开大学,2005.
- [11] Liu Fengnian, Xu Lingling, et al. Experimental research on small-signal 1064 nm pulse Yb-doped fiber amplifier
 [C]. Nanjing; OFC, 2007. (in Chinese)
 刘丰年,徐玲玲,等. 1064 nm 小信号纳秒脉冲掺 Yb 光
 纤放大器的实验研究[C].南京: OFC, 2007.
- [12] Zhou Bingkun. Principle of lasers [M]. Beijing: National defence industrial press,2000.
 周炳琨.激光原理[M].北京:国防工业出版社,2000.