文章编号:1001-5078(2011)10-1061-06

·综述与评论·

# 用于天文观测的先进红外焦平面技术

左 雷<sup>1</sup>,周 琪<sup>2</sup>

(1. 中国电子科技集团公司第二十七研究所,河南郑州 450005;2. 哈尔滨工业大学电子与信息工程学院,黑龙江 哈尔滨 150006)

**摘 要:**红外谱段的天文观测,对知悉太阳构成、探索隐藏宇宙、获取丰富的谱特征以及追溯宇 宙早期生命等天文问题的研究具有非常重要的意义<sup>[1]</sup>。但对于覆盖1μm~xmm非常宽泛谱 段的探测,需要运用不同类型的红外探测阵列技术。目前,满足1μm 至毫米波段探测要求的 多种红外探测阵列的制作技术均已臻于成熟,包括:响应谱段1~5μm的混合式结构的 InSb 和 HgCdTe 光伏阵列;响应谱段为5~28μm 的 Si:As杂质能带电导器件;响应远红外谱段的光 导器件;响应亚毫米波及毫米波段的测辐射热计或者超导器件。20世纪80年代,人类第一次 将红外焦平面阵列应用于天文探测以来,红外谱段的天文探测能力平均每7个月就增强1倍。 本文通过阐述了国际上用于天文观测探测器阵列技术,探讨了其中的基本原则。希望能够提 供更多的信息供研究人员参考。

关键词:红外;焦平面技术;天文观测;IBC

中图分类号:TN219 文献标识码:A DOI:10.3969/j.issn.1001-5078.2011.10.001

# High performance infrared focal plane arrays for astronomy

ZUO Lei1, ZHOU Qi2

(1. The 27<sup>th</sup> Research Institute of CETC, Zhenzhuo 450005, China;

2. Harbin Institute of Technology, School of Electronics Information Engineering, Harbin 150006, China)

Abstract: Observations at infrared, submillimeter wavelengths will be essential for addressing many of the key questions in astrophysics. Because of the very wide wavelength coverage, a variety of detector types will be required to satisfy these needs. They include direct hybrid arrays of InSb and HgCdTe photodiodes from 1 to  $5\mu$ m, and of Si:As Impurity Band Conduction detectors from 5 to  $28\mu$ m; a number of approaches to photoconductive detector arrays in the far infrared; and bolometer arrays or superconducting devices in the far infrared through mm-wave spectral range. The underlying principles behind these approaches and the application of these principles are discussed. Key words: infrared; focal plane arrays; space application; IBC

1 引 言

温度低于4000 K 的天体的辐射主要集中在红 外区,因此是空间红外天文观测的主要对象。其意 义体现在以下几个方面<sup>[2]</sup>:①揭示冷状态的物质, 空间红外观测对研究低温环境非常重要,例如恒星 周围形成的多尘恒星云和被冰覆盖的卫星表面; ②探索隐藏的宇宙,红外谱段的光线具有极强的 穿透性,可以穿透宇宙中的云团和尘埃。借助红 外望远镜,我们可以观测到银河系的中心和新形 成的星系;③获得丰富的谱特征;④追溯宇宙早期 的生命。

现代天文学领域的红外探测开始于 1965 ~ 1985年,最初只是基于单元探测器或者是单元探测器的线列叠加。1984年红外探测阵列第一次被应用于天文探测,早期的红外阵列规模很小,但具有

作者简介: 左 雷(1968 - ), 男, 高级工程师, 硕士, 主要从事科 研管理, 红外技术等方面的研究工作。E-mail: zuolei126@126. com 收稿日期: 2011-07-28

接近单元探测性能和多元阵列的优势,比较典型的 应用阵列为 32 × 32<sup>[3]</sup>。短波红外和中波红外谱段 探测阵列性能的提高,主要归功于军事上的迫切需 求:军事应用对红外探测性能的苛刻要求,推动了短 波、中波红外焦平面技术的迅猛发展:而红外焦平面 阵列技术应用的成熟更离不开各国军方资金方面的 大量投入。当然,世界上主要红外探测器件的供应 商对红外焦平面阵列卓越性能的不懈追求和探索, 也为近30年红外探测技术的发展提供着源源不竭 的动力。这其中包括<sup>[4-6]</sup>:美国的雷声视觉系统 (Raytheon Vision Systerm), DRS Technologies, 和泰 勒达因影像传感(Teledyne Imaging Sensors);法国的 索芙拉蒂(SOFRADIR), ULIS; 以色列的 Semiconductor Devices(SCD);加拿大的 INO 等。而在远红 外波段(30~200 μm)和亚毫米(200~1000 μm)的 红外焦平面阵列,天文观测则是主要的需求者,天 文学研究需求推动这两个波段焦平面阵列基本技 术的发展。

实现光量子的探测技术多种多样,需要根据应 用的需要进行选择。天文观测对红外焦平面探测技 术具有独特的要求<sup>[7-8]</sup>:焦平面阵列必须对微弱辐 射及时有效的响应,需要焦平面阵列具有极低本底 噪声、极小的暗电流、极高的灵敏度,将材料固有性 能发挥到极致。用于天文观测的焦平面阵列技术基 本代表着当时红外探测技术的最高水平。总体来 看,天文观测最为关注焦平面阵列的如下指标:①噪 声;②量子效率;③阵列规模。可以用如下的公式表 示焦平面阵列的天文探测能力<sup>[9]</sup>:

探测能力=阵列规模×(探测元的灵敏度)<sup>2</sup>(1)

# 2 主要的焦平面阵列技术

2.1 光导型焦平面阵列

受到光量子激发,半导体中将产生光生载流子, 在电场的作用下光生载流子流向电极,最终被高性 能的放大器捕获,达到探测的目的。光导型探测器 又分为:本征光电导器件,光量子的能量≥禁带能 量,将半导体价带中的电子激发到导带,产生电子和 空穴参与导电;非本征光电导器件,光量子将价带中 的电子激发到杂质能级上,产生空穴参与导电,或光 量子将杂质能级上的电子激发到导带中,产生电子 参与导电。通过上述原理,得出此类探测器响应长 波限与材料电学特性的关系:

$$\lambda_c = \frac{hc}{E_i} = \frac{1.24 \ \mu \text{m}}{E_i(e\nu)} \tag{2}$$

例如:本征 Si 的禁带宽度  $E_i$  = 1. 12 eV,则本征 Si 的探测的长波限  $\lambda_c$  = 1. 1 µm。对于非本征光电 导,公式(2)中的  $E_i$  为杂质能级与价带顶能级或导 带底能级的差值。因此,通过调整杂质能级的位置 能够达到增加非本征光导器件响应波长的目的。假 设能级差(杂质能级到价带顶或者到导带底)足够 小,则可实现探测长波光量子的目的。同时应注意: 本征光电导由于吸收的光量子能量高而具有较高的 量子效率;而非本征光电导受制于杂质能级数量的 限制,探测效率较低。

光量子激发能产生自由载流子,热效应同样能 够激发载流子。要实现低背景噪声探测,自由载流 子的产生机制必须以光量子激发为主,尽可能降低 热激发对探测器的干扰。因此,红外探测器需要工 作在极低的温度,且探测波长越长,所需的制冷温度 越低。制冷温度  $T_{max}$ 与探测长波限  $\lambda_e$  由式(3)近似 表示:

$$T_{\rm max} = \frac{200 \text{ K}}{\lambda_c(\mu \text{m})} \tag{3}$$

而光伏探测器,由于 P - N 结构中存在高阻抗的耗尽层,对热激发的载流子运动起到一定程度的 阻碍作用,可在一定程度上降低对  $T_{max}$ 的要求,但也 需要很低的工作温度。

材料内部的载流子无规则的布朗运动会导致电 流的起伏将给探测器带来一定的噪声,而温度决定 着布朗运动的程度,影响着探测器的噪声水平。此 类噪声被称为约翰逊噪声,也称热噪声:

$$I^2 = \frac{4 \ KTdf}{R} \tag{4}$$

探测器的工作温度冷却为 T<sub>max</sub>时,由公式(4)可 知:为了能够满足低背景噪声探测的要求,探测器的 需要很高阻抗将自身热噪声的水平降低到背景噪声 水平之下。本征半导体内的杂质水平过高,基于量 子机制的隧道效应等增大了暗电流,探测器阻值降 低。而这种量子机制导致的电阻变化与工作温度的 无关,因此高的掺杂浓度,会增大探测器的噪声;而 当掺杂浓度很低时,光量子进入材料后,要经过相对 较长的路径才能被本征吸收,降低了光导型探测器 对宇宙中粒子流冲击的缓冲能力,使得后端电路难 于处理校正,容易受损。并且光导探测器存在着 RC 延迟,低本底噪声,高性能的红外焦平面阵列的延迟 时间甚至高达数秒<sup>[10]</sup>。且一些半导体材料,如 InSb,材料的探测长波限为5.5 μm,电子迁移率很 高,无法实现很高的阻抗,不适于制作高性能的光导 型红外焦平面阵列。因此,光导型探测器在高阻抗、 高性能之间存在一定的矛盾,应用于低背景噪声的 光导型探测器往往是在两者间找到一个最佳的平 衡。但在天文红外观测测卫星(IRAS),空间红外气 象卫星(ISO)和 Spitzer 的远红外谱段均应用了光导

型红外焦平面阵列<sup>[11]</sup>。

2.2 光伏探测器

光伏型红外探测技术为解决光导型器件的矛 盾提供了理想的选择。1~5 μm 的高性能红外焦 平面阵列都是基于光伏效应制作:通过掺杂受主、 施主杂质制作 P-N结,结区两端中的多子在扩散 和漂移的共同作用下达到一种平衡,最终在结区 附近形成高阻抗的耗尽层。结区附近由光量子激 发产生的载流子扩散到结区后,在内建电动势的 作用下通过耗尽区,形成光电流。光伏型探测器 具有很高的量子效率,吸收层厚度小于载流子扩 散距离的情况下,不考虑表面反射,光伏型红外探 测器的理论量子效率可达到 100%。InSb 是最先 被应用于近红外谱段探测的高性能光伏探测材 料,其响应长波限可达5.5 µm,覆盖了 J,H,K,L, M 空间窗口。作为简单的化合物半导体,通过单 晶生长的方式得到的 InSb 材料具有很高的纯度及 良好的一致型,使得其具备制作高性能光伏型焦 平面阵列的良好条件。

Hg<sub>(1-x)</sub>Cd<sub>x</sub>Te 材料也被广泛用于光伏型红外焦 平面阵列的制作。与 InSb 等简单的 III,V族化合物 相比,Hg<sub>(1-x)</sub>Cd<sub>x</sub>Te 最大的优势在于:通过调节 X 的 值,材料的禁带宽度  $E_g$  可调,从而获得不同的长波 限 $\lambda_c$ 。并且 Hg<sub>(1-x)</sub>Cd<sub>x</sub>Te 材料制作的探测器在波 长小于 5.5 µm 时,可以降低探测器对制冷温度的 要求。早期的 HgCdTe 材料很难达到 InSb 等简单化 合物材料的一致性,但目前高性能的 HgCdTe 材料 均采用分子束外延(Teledyne)或液相外延(Raytheon,Sofradir)的方式生长,取得了很好的一致性,并 通过精确控制原子构成比例,改变 HgCdTe 材料结 构和能带宽度,实现了高性能光伏红外焦平面阵列 的制作。普遍采用 Hg<sub>0.70</sub>Cd<sub>0.30</sub>Te 材料制造 5 µm 内 的红外焦平面阵列,Hg<sub>0.55</sub>Cd<sub>0.45</sub>Te 制作响应长波限 为 2.5 µm 的焦平面阵列<sup>[12]</sup>。

响应长波限可调的 HgCdTe 似乎成为波长 >5 μm 谱段红外焦平面阵列的理想选择,但必须注意窄禁 带半导体只允许低的接触电压来维持二极管的耗尽 层,导致 HgCdTe 光伏型焦平面阵列应用于长波探 测时,产生很大的暗电流:工作温度 T = 30 K,探测 长波限  $\lambda_e = 9.0$  μm 的 HgCdTe 光伏型焦平面阵列 1/2 像元的暗电流 < 0.05 e/s;1/6 像元的暗电流位 于4~30 e/s。HgCdTe 光伏型焦平面阵列探测的长 波限典型值为 15 μm,但此时其暗电流无法满足天 文观测低噪声环境对探测器的苛刻要求。

2.3 IBC 器件

天文观测中对于 10~40 µm 谱段的探测采用 了不同于光导、光伏型探测器的技术。通过重掺杂 制作杂质能带电导器件(IBC),也称分簇杂质能带 (BIB,Blocked Impurity Band)器件,如 Si:Ga(长波限  $\lambda_e = 18 \mu m$ ),Si:As(长波限  $\lambda_e = 28 \mu m$ )。IBC 已广泛 的应用于地基天文望远镜系统和 Spizer 空间望远镜 中,工作温度为 7K 时,其暗电流为 0.01~0.1 e/s。 而 Si:Sb(截止波长  $\lambda_e = 40 \mu m$ ),Si:P(长波限  $\lambda_e = 34 \mu m$ )IBC 器件的研制也备受关注。

IBC 器件的结构<sup>[13]</sup>如图1所示:由透光 Si 衬底 层,通过掺杂的方式在衬底层制作下电极;衬底层上 为重掺杂层,此层也作为探测响应层,厚度为25~ 35 µm;重掺杂层上接着制作 3~4 µm 的本征层;本 征层上部制作上电极。本征层阻挡了重掺杂层内的 暗电流,也叫阻挡层。IBC 器件阻挡层的结构设计 大大降低了器件的暗电流,正是因为阻挡层的存在, 重掺杂层的杂质浓度可比一般光导探测器高2个量 级,量子效率得到提升的同时,增强了器件对宇宙离 子流的调节能力。IBC 器件工作时,为了高效的将 光生载流子扫入电极,必须在重掺杂区存在电场,因 此器件的工作电压需要将重掺杂区几乎完全耗尽, 以提高探测效率。高性能的 IBC 器件对材料的纯度 有很高的要求,特别是对于重掺杂区内 P 型杂质的 控制,要求 P 型杂质的水平小于 12 × 10<sup>12</sup> cm<sup>-3</sup>,这 是制作 IBC 器件的关键。



图 1 IBC 器件剖面图

通过本节的阐述,用于实现1~40 μm 红外谱 段探测的高性能红外探测材料如图2所示,依次为 Si 光敏二极管,短波 HgCdTe,中波 HgCdTe,InSb 以 及 Si:As IBC 器件。天文红外观测获取的光流信号 极其微弱,要求焦平面探测器阵列具有极低的噪声 和暗电流,因此探测器的工作温度随探测波长的增 长而降低,各个波段探测阵列需要的工作温度也显 示在图2中。



#### 3 焦平面探测器应用的实例

美国为天文观测提供的高性能红外焦平面阵列主要性能指标如表1所示。

| Parameter               | Raytheon<br>VIRGO/VISTA                         | Teledyne 112RG<br>JWST                            | Raytheon<br>Orion                                 | DRS Technologies<br>WISE                               | Raytheon<br>JWST   |
|-------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|--------------------|
| Detector Type           | HgCdTe                                          | HgCdTe                                            | InSb                                              | Si:As IBC                                              | Si:As IBC          |
| Wavelength Range∕µm     | 0.85 ~ 2.5                                      | 0.6~5.3                                           | 0.6~5.5                                           | 5 ~ 28                                                 | 5~28               |
| Format                  | 2048 × 2048                                     | 2048 × 2048                                       | 2048 × 2048                                       | 1024 × 1024                                            | 1024 × 1024        |
| Pixel Pitch/µm          | 20                                              | 18                                                | 25                                                | 18                                                     | 25                 |
| Operating Temperature/K | 78                                              | 37                                                | 32                                                | 7.8                                                    | 6.7                |
| Read Noise/erms         | 6(slow readout)                                 | 6(slow readout)<br>30~40(fase readout)            | 6                                                 | 42 (Fowler-1; lower noise<br>expected with more reads) | 10                 |
| Dard Current/(e/s)      | < 0.1                                           | < 0.01                                            | 0.01                                              | <5                                                     | 0.1                |
| Well Capacity/e         | > 1.4 × 10 <sup>5</sup>                         | $8 \times 10^4$                                   | $1.5 \times 10^{5}$                               | > 10 <sup>5</sup>                                      | $2 \times 10^{5}$  |
| Quantum Efficiency/%    | >70                                             | >80                                               | >80                                               | >70                                                    | >70                |
| Outputs                 | 4,16                                            | 1,4,32                                            | 64                                                | 4                                                      | 4                  |
| Frames/sec              | 0.4,1.5                                         | 0.1 to 30                                         | 10                                                | 1                                                      | 0.3                |
| References              | Love et al. (2004)<br>Bezawada & lves<br>(2006) | Rauscher et al.<br>(2004)<br>Gamett et al. (2004) | McMurtry et al.<br>(2003)<br>Fowler et al. (2004) | Mainzer et al. (2005a)                                 | Love et al. (2005) |

表1 高性能红外焦平面阵列主要性能指标

3.1 泰勒达因(Teledyne)的 HgCdTe 焦平面阵列

泰勒达因参与制作了多个系列的高性能 HgCdTe 红外焦平面阵列<sup>[14]</sup>,如:①为近红外相机和 多谱段光谱仪(NICMOS),地基天文望远镜制造的 系列红外探测器,探测长波限为2.5 μm;②用于地 基 HAWAII 系列的,长波限为1.72 μm 宽视场红外 相机;③用于詹姆斯韦伯空间望远镜系统(James Webb Space Telescope)的焦平面阵列,探测长波限 为2.5 μm 及5.3 μm。这些高性能的红外焦平面器 件均采用分子束外延技术制作,以 HAWAII-2RG 系 统中采用的 2048 × 2048 HgCdTe 焦平面阵列为例, 简要介绍其工艺过程(如图 3 所示):在 CdZnTe 的 衬底上外延生长 HgCdTe 材料很好的晶格匹配避免 了材料生长过程中产生过多晶格缺陷。早期的 HgCdTe 材料是在蓝宝石衬底上进行生长的,由于晶格匹配不好造成 HgCdTe 材料中晶格缺陷较多,而晶格缺陷成为自由载流子的陷阱显著降低了器件的性能。最先沉积的 HgCdTe 最终会作为探测阵列的吸收层,根据探测波长调整 Hg 和 Cd 的比例,获取所需的禁带宽度;通过掺杂 In 形成阵列的 N 层,最后生长大于掺杂区禁带宽度的 HgCdTe 作为阵列的保护层,其主要作用是限制载流子的运动,使得载流子高效的流向结区,提高量子效率的同时,减少了器件的串扰及潜像。

完成材料生长后,开始器件工艺。光刻确定像 元区,采用注入的方式形成 P 区,掺杂杂质为砷,构 造结区;CdTe 钝化,并制作电极;电极上制作互联铟 柱;去除衬底层,完成焦平面阵列的制作。读出电路 由联华电子(UMC)代工,采用标准的 0.25 μm 工 艺,1,4,32 路逻辑输出可供选择。



图 3 HgCdTe 光伏阵列

短波 HgCdTe 工作波长范围一般为 1.7~ 3.2 μm;镀有增透膜条件下,焦平面探测阵列的量 子效率在 80%~95%之间,响应曲线如图 4<sup>[15]</sup>所 示。雷声公司的用于天文观测的短波 HgCdTe 有 1024<sup>2</sup>和 2048<sup>2</sup>两种规格。图 5 为用于英国 VISTA 天文望远镜的 2048<sup>2</sup> Virgo SCA,4 路或 16 路输出可 选,本底噪声为 18e/s. 而雷声公司还为欧洲航天局 的罗塞塔太空船任务中的 VIRTIS 提供器件,其在没 有增透膜的情况下量子效率也高达 80%。







图 5 2048<sup>2</sup> Virgo SCA

3.2 InSb 焦平面阵列

InSb 光伏型红外焦平面阵列技术是一种十分 成熟的技术,InSb 材料的响应波段为 $0.4 \sim 5.5 \mu m$ , 用于超光谱分析实验,如 HYDICE。其在 $0.6 \sim 5 \mu m$ 之间的量子效率在 $80\% \sim 98\%$ 之间,而大规 模阵列的 InSb 焦平面具有非常小的暗电流,2048<sup>2</sup> 的 InSb 焦平面阵列工作在 30 K 时,暗电流仅为  $0.01 e/s^{[16]}$ 。InSb 优良的性能使得其在天基、地基 天文望远镜中都得到普遍的应用<sup>[17]</sup>,如美国的空间 红外望远镜(Space Infrared Telescope Facility)和日本的Astro-F计划。雷声公司研制的2048<sup>2</sup> InSb 红外焦平面阵列 Orion,具有64 路平行输出,帧频为10 Hz<sup>[18]</sup>,拼接后(如图6所示)用于 NOAO4K×4K1~2.5 μm 的红外相机 NEWFIRM。





3.3 Si:As IBC 焦平面阵列

杂质能带电导器件在 5~25 μm 谱段的空间探 测有着重要的应用, Raytheon 在 IBC 器件方面做了 大量的工作, NASA 的弹头空间望远镜 (Spitzer Space Telescope), 以及 ASTRO – F/IRAC 均应用了 256×256, 像元尺寸 30 μm 的 Si: As 焦平面阵列。 詹姆斯韦伯空间望远镜 (JWST)中的用于探测中 波红外的仪器 (jet propulsion laboratory, JPL)所采 用的红外焦平面阵列也是由 Raytheon Vision System 提供的 1024×1024, 像元间距为 25 μm 的 Si: As IBC 阵列 (如图 7 所示)。其中重掺杂层 As 的掺杂浓度为 10<sup>17</sup> cm<sup>-3</sup>, 而重掺杂层得厚度为 35 μm,耗尽电压为 2 V,响应谱段为 5~28 μm,响 应曲线如图 8 所示。





10.0 K

## 4 结束语

由于篇幅的限制,本文主要对1~40 μm 谱段 先进的焦平面阵列技术进行了简略的阐述。对于 40 μm 至毫米波谱段及甚远红外的探测,主要应用 Ge:Ga 光导器件,工作温度约为1.5 K;测辐射热计 阵列也可用于探测甚远红外,但需要制冷到0.1 K 附近才能达到 Ge 光导探测阵列的探测水平;基于 跃迁边缘传感器(TES)制作的测辐射热计被用于毫 米、亚毫米波段的探测。而基于 MEMS 技术的非制 冷红外探测阵列,近年来也被应用于空间探测。 无需制冷、轻便、成本低廉等优点,使得非制冷焦 平面阵列被用作微卫星的红外探测负载,但其自 身性能的局限必然限制它在天文观测方面的进一 步应用。

应用于天文红外观测的红外焦平面阵列代表着 红外探测技术的最高水平,除了研制先进的传感器 技术外,读出电路技术、互联技术、制冷技术、光学增 透技术等都具有很高的研究价值。作为一个崛起中 的科技大国,在研制先进红外焦平面阵列技术方面, 我们还有很多的工作要做,谨希望本文可为研究人 员提供一些参考。

## 参考文献:

Jiao Weixin. The development of modern space infrared observation technology [J]. International Space, 2003, (8):1-3.

焦维新.当代空间红外天文观测技术的发展[J].国际 太空,2003,(8):1-3.

- [2] Infrared, Submillimeter, Millimeter Detector Working Group. Detector needs for long wavelength astrophysics[C]. Areport by ISMD Work Group, June, 2002.
- [3] Liu Zhaojun. Demands analysis of IR detector for space remote sensor[J]. Infrared and Laser Engineering, Feb, 2008,37(1):25-29. (in Chinese) 刘兆军. 航天光学遥感器对红外探测器的需求分析 [J]. 红外与激光工程,2008,37(1):25-29.
- [4] Wang Shujun. Progress on astronomy infrared observation
  [J]. Journal of Beijing Normal University: Nature Science Version, 2005, 41(3):280-285.
  王术军. 红外天文观测技术进展[J]. 北京师范大学学报:自然科学版, 2005, 41(3):280-285.
- [5] Lu Bo. An analysis and prospect for space exploration development[J]. Oct, 2000, 20(Supp): 80 - 92.

卢波.国外空间探测发展分析与展望[J].空间科学学报,2000,20(增刊):80-92.

- [6] Liu Zhaojun. Space application of staring imaging technology with area FPA[J]. Infrared and Laser Engineering, Oct., 2006,35(5):541-545. (in Chinese) 刘兆局. 面阵凝视型成像空间应用技术[J]. 红外与激 光工程,2006,35(5):541-545.
- [7] Gong Haimei. Developmets an trends in spaceborne infrared detectors [J]. Infrared and Laser Engineering, Feb, 2008,37(1):18-24. (in Chinese)
  龚海梅. 航天红外探测器的发展现状与进展[J]. 红外 与激光工程,2008,37(1):18-24.
- [8] G H Rieke. Infrared detector arrays for astronomy[C] Annual Review of Astronomy and Astrophysics, October, 2006,7.
- [9] Alan W Hoffman. Mega-Pixl detector arrays: visible to 28 µm[J]. Proceedings of SPIE, 2004, 5167:194 - 202.
- [10] A Rogalski. Infrared detectors for the future [J]. Acta Physica Polonica, 2009, 116(3):389 - 406.
- [11] Gert Finger. Review of the state infrared detectors for astronomy in retrospect of the June 2002 workshop on scientific detectors for astronomy [C]. Areport by ISMD Work Group, June 2002.
- [12] Gert Finger. Infrared detector systems at ESO[C]. Areport by ISMD Work Group, June, 2002.
- [13] Michael E Ressler. Performance of the JWST/MIRI Si:As detector[J]. Proc. of SPIE Vol. 7021,702100, (2008): 702100 - 1 ~ 702100 - 12.
- [14] Bernard J Rauscher. The James webb space telescope and it's infrared detectors[J]. Experimental Astronomy, 2005, 19:149 - 162.
- [15] Philippe Tribolet. Large infrared focal pland arrays for space Applacations[J]. ZSTS, 2002 - n - 40:3 - 10.
- [16] Philip R christensen. The thermal emisson imaging system (themis) for the mars 2001 odyssey missom [J]. Space Science Reviews December, 2004, 110:85 - 130.
- [17] Geng Lin. Foreign spaceborne laser application [J]. Laser & Infrared, 2010, 40(9):919-925.
   耿林. 国外空间激光应用技术研究发展[J]. 激光与红 外, 2010, 40(9):919-925.
- [18] Zhong Yi. Design of low noise circuitry using InGaAs detector for spatial remote sensing [J]. Laser & Infrared, 2009,39(5):514-517.

钟轶. 空间遥感用 InGaAs 探测器低噪声电路系统设计 [J]. 激光与红外,2009,39(5):514-517.