文章编号:1001-5078(2011)10-1112-05

· 红外技术 ·

红外鱼眼成像系统非均匀性校正方法

严世华¹,何永强¹,李计添² (1. 军械工程学院,河北石家庄 050003;2.96166 部队,广东 韶关 512158)

摘 要:分析了时域高通滤波校正算法中容易出现目标退化及"伪像"的问题,指出滤波方程 的截止频率与信号频域分布的变化不匹配是产生问题的原因。结合红外鱼眼系统成像的特 点,通过目标检测的方法分辨需要调整滤波截止频率的像元,对其采用不同的时域高通滤波方 式,即改变滤波器的截止频率,有效地减少了目标退化和伪像的影响。采用主观和客观评价指 标对试验的红外序列图像进行评价,结果表明改进的时域高通滤波校正方法效果明显。

关键词:红外鱼眼;非均匀性校正;时域高通滤波

中图分类号:TN215 文献标识码:A DOI:10.3969/j.issn.1001-5078.2011.10.011

Nonuniformity correction method for infrared fish-eye system

YAN Shi-hua¹, HE Yong-qiang¹, LI Ji-tian²

(1. Ordnance Engineering College, Shijiazhuang 050003, China; 2. Unit 96166 of PLA, Shaoguan 512158, China)

Abstract: The cause of the target fade-out and the ghosting artifact in temporal high pass filtering nonuniformity correction(THPF-NUC) for infrared imaging system is studied. It is found that the mismatching of the filter cut-off frequency with the target spectral distribution change is the cause of the problem. Based on the characteristic of infrared fish-eye imaging system, the pixels of object are separated and applied to different filters with different cut-off frequency. By this way the target fade-out and the ghosting artifact are reduced effectively. By subjective or objective appraisal of the infrared images acquired in experiments, the results proves that THPF-NUC is better than other methods. **Key words**; infrared fish-eye; nonuniformity correction; temporal high pass filtering

1 引 言

红外成像系统非均匀性是包括光学系统、探测器组件(包括杜瓦瓶、冷屏、探测器、读出电路、制冷机等)、模拟信号调理电路以及 A/D 转换电路在内的各部分非均匀性的叠加。通常采用的非均匀校正方法有两类:一类是基于黑体标定的方法^[1],该类方法原理简单,是实际 IRFPA 组件产品中主要采用的方法,校正精度较高;另一类是基于场景的方法^[2],利用外部场景的变化,以一定的算法对每帧图像进行非均匀校正。红外鱼眼探测系统探测视场角大,黑体标定的方法很难保证全视场均匀覆盖,若采用部分区域标定后拼接的方法又很难避免环境的影响,因而,大视场系统适合采用基于场景的校正方法。基于场景的校正方法主要包括时域高通滤波

法、恒定统计法和神经网络法等,无论何种基于场景的校正方法都不可避免产生目标退化和"伪像"^[3], 所有针对基于场景校正方法的改进都是为了减少目标退化和"伪像"的影响。本文结合红外鱼眼系统成像的特点,对时域高通滤波校正法进行改进,减小 了校正过程中目标退化和"伪像"的影响。

2 时域高通滤波校正

Scribner 等人参考人眼水平细胞对光信号的时 域低通滤波特性,结合双极细胞和感光器综合处理 能力,提出了时域高通滤波校正算法^[4-5]。时域高

基金项目:国家专项技术创新计划项目(No.6130319)资助。

作者简介:严世华(1980 -),男,博士,主要研究方向为光电对抗及信息处理。E-mail:ysh.work@163.com

收稿日期:2011-05-05;修订日期:2011-06-01

通滤波法采用了迭代的运算方式减少了存储空间, 算法相对简单,实时性好,因而在实际工程中应用 广泛。

高通滤波器的具体设计方法如下:
$$y_{ij}(n) = x_{ij}(n) - f_{ij}(n)$$
 (1)
低通采样输出:

$$f_{ij}(n) = \frac{1}{M} x_{ij}(n) + \left[1 - \frac{1}{M}\right] f_{ij}(n-1)$$
(2)

式中,n 代表帧数; *i*, *j* 表示第 *i* 行第 *j* 列的像素; *y_{ij}(n)* 是校正后第 *n* 帧输出; *x_{ij}(n)* 是探测器第 *n* 帧 输出; *f_{ij}(n)* 为第 *n* 帧的低通滤波输出; *M* 为预先选 定的时间常数。

高通滤波器的系统传递函数为:

$$H(z) = \frac{(M-1)(Z-1)}{MZ - (M-1)}$$
(3)

由 $H(z) = e^{i\omega\tau}, \tau$ 为采样时间,可得频率响应和 截止频率:

$$|H(e^{j\omega\tau})| = \left[\frac{2(M^2 - 2M + 1)(\cos(\omega\tau) - 1)}{2(M^2 - M)(\cos(\omega\tau) - 1) - 1}\right]^{1/2}$$
(4)

$$\omega_{c} = \frac{1}{\tau} \arccos\left(\frac{M^{2} - 3M + 1.5}{M^{2} - 3M + 2}\right)$$
(5)

较小的 M 值会较快达到稳定,但是对景物的随机性要求也更强,即目标易融入背景产生"伪像"。反之,较大的 M 值会使景物的短时非随机的影响也小一些,但系统需要较长时间才能稳定。因此, M 值的选定应由实际的场景来决定。

3 鱼眼系统成像特点

采用斯特林制冷探测器与红外鱼眼镜头组成的 探测系统,成像的非均匀性应是红外焦平面不均匀 性和外部光学组件引起照度不均匀性的叠加。由于 多种原因使得成像的中央区域的响应灰度比边缘区 域高,图1(a)为镜头加盖(视为均匀背景)时系统 输出的二维灰度图像,图1(b)为其三维图像。

从图1中可以明显看到除个别坏点外,图像灰度从较高的中央区域呈一定趋势向边缘下降。另 外,根据鱼眼成像的放大率公式^[6],其径向放大率:

$$\beta_r = \frac{f}{r} \tag{6}$$

切向放大率:

$$\beta_r = \left| \frac{\omega}{\sin \omega} \right| \frac{f}{r} \tag{7}$$

式中,f为焦距;r为物距;ω为视场角。由于鱼眼探 测系统视场角大,焦距较小,由公式(6)、式(7)可推 出一般探测条件下辐射亮度差异较大的特殊区域成 像面积不会很大,对于运动场景,这类区域在某些像 元上停留的时间不会很长,这些特点为改进滤波方 法提供了参考。

4 时域高通滤波校正方法改进

文献[7]用简化一维模型来说明高通滤波校正 方法产生"伪像"的根本原因是图像场景运动不够 充分。但要求视场中的景物做随机运动,让背景和 目标的辐射充分运动到各像元而且停留的时间基本 一致,一般很难做到,在大视场系统中更难实现。

通过观察发现目标退化和"伪像"都是出现在 目标经过的区域,目标在某像元停留的时间越长 在该像元产生的退化和"伪像"越明显。目标停留 的时间的长短显然与像元输出信号的频谱分布有 关,当时间窗口同取 100 帧,图 2(a)、图 2(c)分别 为目标经过某个像元时停留了 10 帧和 30 帧时输 出的信号,图 2(b)、图 2(d)为其对应的归一化频 谱分布。由此可见,目标停留时间越长信号功率 越趋向低频。

由式(5)得出 M 值与截止频率的关系如图 3 所示。传统的时域高通滤波校正算法中,M 值一般固定不变,因而时域高通滤波的截止频率没能适应信号的变化,导致了目标退化和"伪像"产生。

Fig. 3 amplitude frequency response of filter

若自适应改变 *M* 的大小,即改变截止频率,以 适应目标信号的变化,能够提高输出红外图像的质 量^[2],但在大视场的复杂背景下即时调整每个像元 的滤波截止频率相当繁琐,而且对于目标的停留时 间很难做到准确估算。

$$f_{ij}(n) = \begin{cases} \frac{1}{M} x_{ij}(n) + \left[1 - \frac{1}{M}\right] f_{ij}(n-1) \\ f_{ij}(n-1) \end{cases}$$

同时注意,图1中边缘与中央区域的灰度值相 差很大,为加快校正速度,在利用场景校正前用单点 校正的方法对图像预先进行处理,即将采集到的场 景图像减去加盖时图像,消除较大的偏差,得到场景 较为均匀的成像。因此,整个校正步骤:

(1)单点校正,序列图像与加盖时的数据图像 相减得到新的红外序列数据图像;

(2)在新的单帧红外数据图像中,通过式(11)、式(12)得出检测门限,找出需要调整截止频率的像元;

(3)依据式(13)确定滤波方程的选择;

(4)由式(1)进行校正输出。

4 试验及结论

试验系统为红外中波鱼眼斯特林制冷探测系

虽然滤波器的截止频率与目标的频谱分布的不 匹配导致目标退化和"伪像",但目标的退化和"伪 像"影响的严重程度却处决于目标灰度与背景的差 异的大小,即目标的灰度值差异越大,其产生的影响 越深,相应目标退化和"伪像"就越明显,反之影响 就较小。因此,结合检测目标的方式,设定目标检测 的门限,对于超过门限的区域,其像元时域高通滤波 的截止频率需要调整,其他区域则不进行调整。

目标检测的过程中,白噪声经过一定带宽的滤 波器后,输出噪声是高斯型的,其概率密度为:

$$P(i_n) = \frac{1}{\sqrt{2\pi}I_n} \exp\left(-\frac{i_n}{2I_n^2}\right)$$
(8)

式中, I, 为噪声均方根值, 平均虚警概率为[8]:

$$\overline{\text{FAR}} = \frac{1}{2\sqrt{3}\tau} \exp\left(\frac{-I_t^2}{2I_n^2}\right)$$
(9)

式中, 7 为输入带宽; I₁ 为探测阈值。

单帧虚警概率:

$$P_{f} = \tau \overline{\text{FAR}} = \frac{1}{2\sqrt{3}} \exp\left(\frac{-I_{t}^{2}}{2I_{n}^{2}}\right)$$
(10)

因而可以依据虚警率指标计算探测阈值:

右呆像兀旳灰度值满足:

 $|x_{ij}(n) - f_{ij}(n-1)| > I_i$ (12) 则将该像元的滤波截止频率降低,即*M* 值变大,取 其极端*M*→∞时,低通采样输出停止更新,即式(2) 改为:

$$|x_{ij}(n) - f_{ij}(n-1)| > I_{i}$$

$$|x_{ii}(n) - f_{ii}(n-1)| < I_{i}$$

$$(13)$$

统,图像大小 240 × 320,序列图像采集频率为 50 Hz,数字输出图像为14 比特位量化(最大灰度 值为16383)。由于只覆盖了半球空域的大部分, 图像畸变不太明显。在室内取试验场景,图4为 校正过程中输出图像,图中桌上饮水机辐射亮度 最高,辐射较均匀的是黑板和墙壁,由于地面砖的 反射影响,存在镜像景物。图4(a)、图4(c)、图4 (e)、图4(g)分别为第200 帧时的原始数据图像、 单点校正后的图像、改进前高通滤波校正的图像 和改进后高通滤波校正的图像,图4(b)、图4(d)、 图4(f)、图4(h)分别为与之对应的第250 帧时输 出图像。采用主观和客观两种评价方法对校正的 效果进行评价。

图 4 和山图秋利比 Fig. 4 output image constrast

(1) 主观评价

由图可见,单点校正明显提高了图像的可观性, 但将本来灰度值较高的中央区域校正过多,未能消 除中央与边缘像元灰度的差异,图像仍然很模糊;高 通滤波校正输出的图像存在明显的"伪像",而且 "伪像"影响的大小与与场景运动的速度有关;改进 后高通滤波校正输出的图像减少了"伪像"影响,对 比其他图像,其校正效果明显。

(2)客观评价

客观评价采用邻域内标准差^[9]和比度指标^[3] 来衡量校正的效果。取场景中红外辐射均匀的区 域,求其标准差公式:

$$Ro = \frac{1}{mn} \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x_{ij}})^2}$$
(14)

其中,x_{ij}和x_{ij}分别为像元灰度值和区域像元灰度均 值;m和n为区域大小。标准差 Ro 越低表示效果 越好。

比度指标计算公式:

$$C = \frac{|g_1 - g_2| \cdot (S_1 + S_2)}{(S_2 \cdot \operatorname{std}(g_1) + S_2 \cdot \operatorname{std}(g_2))}$$
(15)

其中, g_1 和 g_2 分别为区域1和2的灰度均值; S_1 和 S_2 分别为区域1和2的面积;std(g_1)和std(g_2)分 别为区域1和2的标准差,对比度越高表示效果 越好。

选取场景中两块辐射亮度均匀的区域,使用 两种方法进行评价,得出结果如表1所示。从表1 中可见,无论哪种评价方法都表明,校正后的输出 图像比原始图像效果要好很多;两种评价的结果 大多数表明改进后的高通滤波校正方法要优于改 进前的高通滤波,只是第220帧标准方差1未能证 明这一点;由图4(c)、图4(d)可以明显看出不同 区域存在很大的固有差异,导致两区域的平均值 差异很大,因而采用对比度的方法评价时单点校 正有时要明显好于其他校正方法,但标准差的评 价结果表明单点校正不能优于改进后的高通滤波 校正方法。

表1 非均匀校正效果客观评价

Tab. 1 objective appraisal of nonuniformity

	1.
correction	results

	第 200 帧			第 220 帧			第 240 帧		
	对比度	方差1	方差2	对比度	方差1	方差 2	对比度	方差1	方差2
改进高通 滤波	9.639	0. 263	0.246	7.235	0.394	0. 293	7.606	0.425	0.301
高通滤波	8.782	0. 289	0.276	6.192	0.373	0. 295	6.021	0.662	0.365
单点校正	6.921	0.382	0.363	8.890	0.444	0.424	12.44	0.441	0.412
原始图像	1.291	4.205	3.732	0.702	3.759	5.166	3.314	3.249	5.425

由此得出结论,无论是主观效果评价,还是综合 两种客观评价结果,都表明改进的高通滤波校正方 法效果较好。改进校正方法在滤波前区分不同背景 的像元,确定此时不同像元的滤波方程,从而减少了 传统高通滤波校正方法中产生的目标退化和"伪 像"的影响。该方法不仅在鱼眼系统可以应用,也 是其他探测系统进行非均匀性校正的参考。

参考文献:

[1] Zhao Yan, Zhang Yan, Shen Zhenkang. Improved detector nonuniformity correction based on s-curve model[J]. Laser & Infrared, 2008, 38(3):226-229. (in Chinese) 赵岩,张焱,沈振康.改进的探测器 S 形曲线的非均匀 校正 算法研究[J].激光与红外, 2008, 38(3): 226-229.

Liu Chanlao, Tan Lixun, et al. An improve high pass filtering algorithm for nonuniformity correction of infrared image [J]. Infrared Technology, 2006, 28 (8): 439 - 442. (in Chinese)

刘缠牢,谭立勋,等. 红外图像非均匀性校正高通滤波 算法的改进[J]. 红外技术,2006,28(8):439-442.

- [3] Zhang Tianxu, Shi Yan. Eliminating the ghosting artifact and target fade-out in adaptive nonuniformity correction for IRFPA[J]. J. Infrared Millim Waves, 2005, 24(5): 335-340. (in Chinese) 张天序, 石岩. 红外焦平面阵列非均匀性自适应校正 算法中目标退化与伪像的消除方法[J]. 红外与毫米 波学报, 2005, 24(5): 335-340.
- [4] Scribnerd A, Sakadyka, Caulfield Jt, et al. Nonunifor-mity correction for staring IR focalplane arrays using scenebased techniques [J]. Infrared Detectors and Focal Plan Arrays, SPIE, 1990, 1308;224 – 233.
- [5] Scribnerd A, Sarkady K A, Kruerm R, et al. Adaptiv retina-like preprocessing for imaging detector arrays [J].

Proc. IEEE, 1993: 1955 - 1960.

- [6] Wang Yongzhong, Fish-eye lens [M]. Beijing: Science Press,2006:34-35.(in Chinese)
 王永仲. 鱼眼镜头光学[M]. 北京:科学出版社,2006: 34-35.
- [7] He Taicheng. The research for Non-uniformity correction of infrared focal plane arrays[D]. Xi'an:Xidian University,2008. (in Chinese) 何泰诚. 红外焦平面非均匀性校正算法的研究[D]. 西 安:西安电子科技大学,2008.
- [8] Zhou Liwei. Target detection and identification[M]. Beijing: Beijing Institute of Technology Press, 2004: 302-304.(in Chinese)
 周立伟. 目标探测与识别[M]. 北京:北京理工大学出版社,2004:302-304.
- [9] Torres S N, Pezoa J E, Hayat M M. Scene-based nouniformity correction for focal plane arrays by the method of the inverse covariance form [J]. Applied Optics, 2003, 42(29):5872-5881.