文章编号:1001-5078(2013)10-1089-06

・综述与评论・

# 基于三代红外探测器的一种新型材料——硒镉汞

# 王经纬,巩 锋

# (华北光电技术研究所,北京100015)

摘 要:介绍了一种新型的红外探测器材料硒镉汞(HgCdSe)的最新研究进展,以及其所使用 的衬底材料 ZnTe/Si(211)和 GaSb(211)的最新研究情况。通过与碲镉汞(HgCdTe)材料的对 比可看出,硒镉汞材料的性能优良,比碲镉汞性能更稳定、更易生长,并且有较为成熟的衬底材 料,辅以在同是汞基材料 - 碲镉汞上面所取得的生长经验,有望成为替代碲镉汞的下一代红外 探测材料,极具应用前景。

关键词: 硒镉汞; 分子束外延; 第三代焦平面器件 中图分类号: TN213 文献标识码: A DOI: 10.3969/j.issn. 1001-5078.2013.10.02

# New material for the third generation of IRFPA-HgCdSe

#### WANG Jing-wei, GONG Feng

(North China Research Institute of Electro-optics, Beijing 100015, China)

**Abstract**: The recent development of a new type of Hg-based infrared material-HgCdSe is introduced, and the up-todate research progress of its substrates including ZnTe/Si (211) and GaSb (211) is presented. Compared with HgCdTe, HgCdSe has higher performance, and its growth is easier, meanwhile it has mature substrate. It is considered that HgCdSe has the potential to be a powerful infrared material for the next generation detectors. **Key words**: HgCdSe; MBE; 3rd generation IRFPAs

# 1 引 言

目前,第三代红外探测器正向着大面阵,双多色和低成本方向发展。但随着红外焦平面阵列规模的扩大,由于尺寸和成本的限制,传统的碲锌镉(CdZnTe)衬底逐渐成为碲镉汞(HgCdTe)红外焦平面探测器发展的瓶颈,大尺寸、低成本Si基HgCdTe材料应用而生。经过20多年的努力,分子束外延(MBE)生长Si基HgCdTe材料和器件获得了巨大的进步,尤其在中波和短波波段,美国Teledyne和Raytheon公司已研制出中波、短波4K×4K 焦平面探测器,性能与CdZnTe基HgCdTe器件相当。然而,在长波波段,由于大晶格失配造成Si基HgCdTe材料的位错密度高于CdZnTe基HgCdTe材料两个量级以上,成为大规格长波碲镉汞探测器发展的瓶颈。

硒镉汞(HgCdSe)和HgCdTe性能相似,作为一

种极具发展潜力的红外探测材料已被发现多年,但 是由于早期缺少合适的衬底、错误的晶向选择及外 延技术不成熟等原因,结果不甚理想,研究被搁置。 随着 III-V 族衬底制备及分子束外延 HgCdTe 技术 的成熟,美国陆军实验室(ARL)在两年前重新开始 HgCdSe 材料的研究,随后 Texas 州立大学和 Arizona 州立大学也相继加入其中,并且获得了性能良好的 材料,具有极佳的应用前景。

#### 2 硒镉汞材料相比于碲镉汞的优势

HgCdSe 材料同 HgCdTe 一样,禁带宽度连续可调,能够吸收任何波长的红外辐射,此外,其还具有碲镉汞不具备的其他性能。

收稿日期:2013-03-20

**作者简介:**王经纬(1983 - ),男,工程师,硕士,主要从事 HgCdTe,InSb 等红外探测材料生长技术的研究。E-mail:wjwsgdtc @163.com

HgCdSe可以使用成熟的大面积半导体材料作 为衬底。大面积、低成本的晶格匹配的衬底材料是 制约 HgCdTe发展的根本原因,而对 HgCdSe 材料来 说,目前有两种已经可以商用化的 III - V 族二元半 导体材料锑化镓(GaSb)和砷化铟(InAs)可用作 HgCdSe 生长的衬底材料。这两种衬底材料与 HgCdSe 几乎晶格匹配,且材料本身的质量很好,位 错密度低于 CdZnTe 衬底。因此有理由相信通过条 件合适的外延可以使生长出的硒镉汞材料中的位错 密度控制在非常低的水平,甚至优于碲锌镉基碲镉 汞材料,从而大大改进焦平面阵列的性能。此外作 为一种成熟的替代衬底,ZnTe/Si 的晶格和 HgCdSe 晶格匹配很好。



#### 图1 禁带宽度与晶格常数示意图

硒-镉(Cd-Se)的键能要远高于碲-镉(Cd-Te)的键能,使 HgCdSe 材料本身更不易产生位错, 这是 HgCdSe 优于 HgCdTe 另一个优势。HgCdSe 材料生长温度低,结晶质量高。研究发现,HgCdSe 的 最佳生长温度在 80°C ~ 100°C 之间,并且 HgCdSe 的表面形态与衬底的表面形态类似,在 GaSb 衬底 上会形成非常光滑的表面;同时不管选用何种衬底, 可观察到的缺陷都非常少,材料结晶质量高。此外, 研究人员发现,在 GaSb 或 ZnTe/Si 衬底上生长的 HgCdSe 材料 中没有 气孔缺陷,而这种缺陷在 HgCdTe 材料中相当普遍,并会严重影响红外焦平面 阵列的性能。

因此,HgCdSe 材料有望在长波波段甚至在全波 段取代 HgCdTe。

#### 3 硒镉汞材料的发展及最新成果

早在 20 多年前,就有过 HgCdSe 材料研究的 相关报道,但受衬底制备、材料外延技术等所限, 结果并不理想。近年来随着 Type-II 的发展, GaSb 单晶生长和表面制备技术都得到了长足进步;同时 ZnTe/Si 复合衬底和分子束外延技术的成熟,美国陆军实验室等研究机构在 2009 年前后重新开始了 HgCdSe 研究,2011 年相关研究文章陆续发表。

3.1 衬底研究进展

HgCdSe 分子束外延使用 GaSb、InAs 和 ZnTe/Si 复合衬底材料,(211)晶向由于 Hg 消耗量少、有利 于孪晶抑制和掺杂等独特的优势,是分子束外延生 长 Hg-基材料的择优晶向。

3.1.1 III-V 族衬底

对于 GaSb 衬底,首先需要解决的问题是氧 化层的去除。由于通常的 Hg-MBE 设备中没有 Ga和Sb源,GaSb衬底的预处理需在III-V族腔 室中进行,处理后再转移到 Hg-MBE 中进行 HgCdSe 材料外延。方法为在 III-V 腔室中,先将 衬底加热到约590℃去除氧化层;去除后,衬底温 度降到约500℃生长一层约0.2 微米厚的 GaSb。 这样即可获得一个适合 HgCdSe 外延的、清洁、平 整的的 GaSb 表面。为了防止在衬底转移到 II-VI 腔室过程中, GaSb 表面被再次氧化, 在 GaSb 生 长结束后,在衬底降到室温前,在其表面再次 生长一层As。进入到 II-VI 腔室后,通过对衬底 加热去除掉表面的 As 层。过程中需要注意的 是,衬底温度和加热时间需要严格的控制,来确 保As和O被完全去除,同时GaSb表面的组分比 良好。

目前 GaSb 衬底的表面处理技术还不理想,不 论相对成熟的 GaSb(100)还是 GaSb(211)衬底的 表面都会存在 20nm 左右的小坑,主要是在衬底表 面磨抛过程中产生的。虽然 X 射线双晶衍射半峰 宽一般分别在 20 和 30aresec 左右,最好可以达到 18aresec,但表面粗糙度和小坑会在一定程度上影响 外延层的质量。

尽管 GaSb 和 HgCdSe 晶格失配很小,但是仍然 有 0.7%。而根据图 1,如在 GaSb 上生长 HgCdSe 前,先在其上面生长一层 ZnTe<sub>0.99</sub>Se<sub>0.01</sub>缓冲层,可使 其二者之间晶格完全匹配。当在 ZnTe 中加入 Se 进 而进行 ZnTeSe 生长时候,晶体质量会随着组分产生 急剧的变化。从图 2 中可以看出 Se 的组分变化很 小,但是材料的半峰随着晶格失配的增大展宽很严 重。其中当 Se 组分为 1% 时,ZnTeSe 和 GaSb 的衍 射峰完全重合,半峰宽为 34arcsec;表面缺陷密度降 到 5 × 10<sup>5</sup> cm<sup>-2</sup>。



图 3 ZnTeSe 不同晶向表面粗糙度随衬底温度的变化

图 3 中可以看出衬底温度对于 ZnTe<sub>0.99</sub>Se<sub>0.01</sub>的 表面形貌的影响是非常大的,不论在(100)还是 (211)晶向,高温下生长表面更加平整。对于在 GaSb(211)衬底上的生长,在不同的生长温度,并没 有观察到组分和半峰的任何变化。当温度为 335 度 时候(211)晶向获得的最低表面粗糙度为 1.1 nm。 RHEED 图显示在更高的温度下尽管衍射条纹仍清 晰,但会导致表面粗糙度的变差。随着 Zn/(Te + Se)束流比的增加,从 1 到 1.13,表面粗糙度从 1.5nm减小到 1.4 nm。但是 Zn 蒸汽压增加到一定 程度,表面形貌又会变差:当束流比增加到 1.3 时 候,表面粗糙度增大到 2.6 nm;因此生长 ZnTe<sub>0.99</sub> Se<sub>0.01</sub>缓冲层需要略富 Zn 的条件。

3.1.2 ZnTe/Si 复合衬底

ZnTe/Si 作为一种晶格匹配的大面积低成本衬 底被认为未来的发展方向。ZnTe/Si 衬底生长前表 面处理相对简单,同 Si 基 CdTe 复合衬底相同,首先 采用 RCA 工艺处理硅衬底,用以降低材料的去氧化 层温度;去氧化层后在降温过程中,使用 As 对表面 进行钝化;最终衬底降至 ZnTe 的生长温度进行 生长。

2011年,美国陆军实验室系统的研究了Si基衬底上生长ZnTe并在此基础上生长HgCdSe。在研究中找到了在ZnTe/Si(211)衬底上生长HgCdSe材料

的最佳窗口,并获得了质量很好的材料,低缺陷密度,位错密度,极佳的表面形貌。获得的 ZnTe/Si 复合衬底的半峰宽达到 70 arcsec,位错密度在10<sup>5</sup> cm<sup>-2</sup>量级,缺陷密度在 1000 cm<sup>-2</sup>左右。

ZnTe 在约 300℃左右生长,开始采用 MEE 的生 长模式;成核过程结束后,升温到 420℃在 Te 保护 下进行退火,之后使用 ZnTe 源进行缓冲层的生长约 6 µm;生长速率约为 0.6 µm 每小时。在生长过程 中,周期性的进行几次退火,在 Te 保护下,460℃下 进行,用来提高 ZnTe 的质量。研究重点在成核、生 长温度和 ZnTe 生长过程的 II-VI 束流比。



图 6 300℃成核温度、不同生长温度下的半峰和表面形貌

图 4 是双晶衍射半峰宽和成核温度间的关系。 所有的样品均在 260 和 360℃之间,使用 MEE 的生 长过程,然后使用 ZnTe 源在 300℃生长缓冲层。从 结果来看,材料的半峰宽对衬底温度的变化不敏感 即 ZnTe 的成核温度窗口很宽。这可能因为 MEE 的 过程是一个自限制的过程,对温度的容忍度较高。 相似的,研究了表面形貌和成核温度之间的关系,如 图 5 所示,300℃下的表面看起来比其他的温度要更 好。基于成核温度和晶体质量、表面形貌的关系,可 以认为:对于在 Si(211)衬底上生长 ZnTe 材料, 300℃左右是最佳的成核温度。

在研究 ZnTe 生长温度的实验中,选用的样品均 使用 300℃的成核温度,然后在不同的温度下进行 生长。结果的晶体质量和表面形貌如图 6 所示。结 果可以明显的看出,在 280℃到 320℃之间有一个明 显的生长窗口。在这个窗口外生长的 ZnTe 材料表 面粗糙,且半峰宽较大,显示出其晶体质量出现明显 的下降。表面粗糙度在低温条件下的变大是由于原 子在衬底表面的迁移不够所导致,这会使材料表面 的晶体无序度增加;而在高温条件下的变差则是由 于粘 附系数的降低,导致表面三维生长。对于 (211)晶向,表面的三维生长多为(111)晶面。因 此,在材料的表面通常形成三角形的缺陷。结果可 以明显看出如果生长温度过高表面的缺陷会明显的 增加。

对于异质外延 II-VI 族材料,优化的生长条件 通常要有确定的 II/VI 束流比,因为对于这两族元 素来说,其粘附系数不同。对于 ZnTe 来说,Zn 位 于周期表第四周期,Te 位于第五周期,因此增加了 二者热动力学性质的不平衡,因此表面的形貌对 于二者的束流比更加的敏感。美国陆军实验室研 究了在 Si(211)上生长 ZnTe(211)的束流比对于 材料表面形貌和晶体质量的影响。所有的 ZnTe 成核和生长温度均为 300 度,II/VI 族元素的束流 比分别选择 0.5、1 和 2 三种条件的结果如图 7 所示。



图 7 不同 Zn/Te 束流比下的半峰和表面形貌

结果表明,富Zn 生长条件的结果明显比其他的 两个结果要差。在最优的生长条件下,富Zn 生长的 表面即使裸眼看也是明显的粗糙,半峰宽达到其他 两种实验条件的4倍。EPD 的腐蚀结果显示富Te 条件生长的材料质量明显好于富Zn 条件下的结果 (图8所示);同时在富Zn 生长结果中发现许多的 结构缺陷,同样可以归结到大量的位错和较大的半 峰上面。这也说明了位错密度和材料的半峰之间存 在着相关关系。



#### 图 8 不同 Zn/Te 束流比下的 EPD 对比

#### 3.2 硒镉汞材料研究进展

2011 年美国陆军实验室率先对 HgCdSe 生长的 研究进行了报道。HgCdSe 的生长使用 Hg、Cd、Se 作为源材料,在研究生长条件(如缺陷)的过程中需 要调整 Hg 的束流。为了生长出确定波长的材料, Cd 和 Se 源的束流在较小的范围内调整。主要的生 长参数是衬底温度,材料的厚度控制在 4μm 左右。

由于 Hg 的粘附系数特别低,在生长 Hg 基化合物时候衬底温度是十分敏感,因此首先通过研究合适的生长温度确定在特定的束流条件下的生长数率。图 9 中可以看出 HgCdSe 生长速率和衬底温度的关系。在衬底温度不高于 130℃时候,生长速率稳定在 1.5~2.0 µm 每小时之间;当生长温度升到高于 130℃以后,生长速率会急剧降低。相比同样的生长速率 HgCdTe 的优化生长温度 185℃, HgCdSe 的生长温度要低得多。由于 Se 和 Te 的不同,HgCdTe 和 HgCdSe 的生长动力学完全不同,这很可能是由于 Se 的饱和蒸汽压远高于 Te。



图 9 HgCdSe 生长速率与生长温度关系

其次,美国陆军实验室研究了 HgCdSe 生长的 表面形貌,这能够反应出晶体质量,同时在器件制 备过程中有着很大的影响,结果如图 10 所示。 75℃下生长的 HgCdSe 表面十分粗糙,RHEED 显 示在此温度下,尽管生长的开始阶段是处于较好 的晶体生长模式,但是随后开始了三维生长,最终 变为非晶生长;在 RHEED 图上显示为由条纹状变 为点状,最终衍射条纹消失变为昏暗的多晶环。 虽然此温度下 HgCdSe 的生长速率和较高温度下 的完全相同,但是很显然,在这样低的温度下不再 是晶态的生长。



图 10 不同生长温度下 HgCdSe 表面形貌

在更高的 80~100℃范围内, HgCdSe 可能处于 最佳的生长窗口内。材料表面的 RHEED 条纹较 长, 而与衬底是 GaSb 还是 ZnTe/Si 无关, HgCdSe 材 料表面形貌良好, 缺陷较少。X 射线双晶衍射测试 结果得到材料的半峰宽为 GaSb 衬底上 220arcsec, ZnTe/Si 衬底上 280arcsec。

当生长温度接近130℃,材料的半峰宽出现比 较大的变化。GaSb 衬底和 ZnTe/Si 衬底的半峰宽 分别为180arcsec和250arcsec。然而针状缺陷在 材料的表面开始出现。随着温度的升高,针状缺 陷的数量还在增加;而在100℃左右,这种缺陷几 乎没有。很显然,通过这个实验过程可以看出,针 状缺陷的形成和衬底的选择无关。由不同的衬底 选择得到相似的结果可以看出:缺陷的形成只和 HgCdSe 的生长过程相关:尽管 GaSb 衬底处理过 程没有优化,但是如果生长条件合适,并不是制约 HgCdSe 生长的条件。此外,尽管生长速率相同, 但是如果生长温度高于100℃,会对材料的表面形 貌产生致命的影响。当温度上升到高于130℃,表 面看起来极其粗糙,X射线半峰也变大。同时,尽 管 RHEED 的条纹显示其仍然是二维生长,但是图 像特别昏暗。很显然,此时的温度不在优化的温 度窗口内。

一个比较令人惊喜的发现是不论何种衬底上 生长 HgCdSe 都没有发现经典的 Void 缺陷,甚至在 HgCdTe 生长的最优条件 185℃的高温下生长也没 有发现。没有 Void 缺陷的一种可能的解释可能是 由于 Se 相对 Te 大的多的蒸汽压,尽管生长温度较 低,但是其表面的迁移速率仍然较快,可以避免表 面 Se 团簇的形成,也就没有了 Void 缺陷形成的种 子,而这正是在 HgCdTe 生长中产生较多 Te 团簇 从而产生 Void 缺陷的原因。通常,对于 HgCdSe 来 说主要的缺陷是针状缺陷,不论衬底是 GaSb 还是 ZnTe/Si。除了与生长温度相关,针状缺陷的形成 还与 Hg 的流量相关。下图 11 中可以看到在相同 衬底温度、Se 流量和 Cd 流量的条件下,2 倍 Hg 流 量和普通 Hg 流量的对比图。较高 Hg 流量的材料 表面更加的平滑;这和我们前面观察到的针状缺 陷随着温度升高而增加是一致的。由于 Hg 粘附 系数随着温度变化十分敏感,更高的温度就是意 味着更少的 Hg 量。同时需要注意的是,Hg 流量 的变化并没有导致材料组分的变化,意味着过量 的 Hg 并没有进入到材料的体内。



图 11 Hg 流量增加 2 倍前后 HgCdSe 表面形貌图



图 12 生长 1 分钟后和生长结束前 RHEED 图对比

Hg 基材料的外延由于 Hg 的粘附系数对温度 的变化十分敏感,因此生长温度是生长过程中最为 重要的参数。生长过程中的 RHEED 图如图 12 所 示。图中分别是生长 1min 和 2 小时的 RHEED 图。 可以看出,在 GaSb 衬底上生长的 HgCdSe 在成核过 程中表面非常平整,可见 GaSb 衬底的表面平整度 非常好。HgCdSe 材料的质量取决于生长温度、束 流,与衬底使用何种材料无关。此外,不论选择哪种 衬底,材料表面的缺陷密度都非常低。通过实验可 以看出,HgCdSe 是一种可信的红外材料,可以生长 在晶格几乎匹配的大面积衬底上。尽管衬底的表面 并不重复,但是最终的结果相当的一致:仅和材料的 生长温度相关。

### 4 展 望

虽然 HgCdSe 的红外性能与当前军用红外探测 器广泛使用的 HgCdTe 材料的红外性能相当,但是 HgCdSe 可以利用分子束外延技术在当前成熟商用 的大面积晶格匹配 GaSb 等衬底上生长,可以获得 位错密度较低的材料,进而解决大面阵长波材料的 难题;而且 HgCdSe 材料生长温度低,结晶质量高, 无气孔缺陷,可以使用成熟的大面积半导体材料作 为衬底等优点是 HgCdTe 所不具备的;此外 HgCdSe 的生长只取决于生长温度和材料流量,对衬底质量 要求不高,从而克服了 HgCdTe 用于第三代红外探 测器的衬底限制问题;这些优点对于促进第三代红 外探测器的发展具有重要意义。

# 参考文献:

- GBrill, Y Chen, et al. Material characteristics of HgCdSe grown on GaSb and ZnTe/Si substrates by MBE [J].
  SPIE, 2011, 8155(12):1-9.
- [2] Y Chen, G Brill, et al. MBE growth of ZnTe and HgCdTe on Si; a new IR material [J]. SPIE, 2011, 8155(11):1-6.
- [3] Y Chen, G Brill, et al. Study of HgCdTe material grown by

molecular beam epitaxy [J]. J. Electro. Mater, 2011, 40 (8):1679-1685.

- [4] J Chai, K LEE, et al. Growth of lattice-matched ZnTeSe alloys on (100) and (211) B GaSb[J]. J. Electro. Mater, 2012, 41(10):2738 - 2744.
- [5] J Chai, O Noriega, et al. Critical thickness of ZnTe on GaSb (211)B[J]. J. Electro. Mater, 2012, 41(11):3001 – 3006.
- Y Chen, S Simingalam, et al. MBE-growth ZnTe/Si, a low-cost composite substrate [J]. J. Electro. Mater, 2012, 41 (10):2917 2924.
- [7] W F Zhao, G Brill, et al. Microstructural characterization of HgCdSe grown by molecular beam epitaxy on ZnTe/Si (211) and GaSb(211) substrates [J]. J. Electro. Mater, 2012,41(10):2852-2856.