文章编号:1001-5078(2017)05-0606-07

光电技术与系统。

一种反射共孔径式激光测距光学系统设计

谢桂娟,吴 健,李长桢 (华北光电技术研究所,北京100015)

摘 要:基于激光测距系统的基本原理,结合反射系统的光学特性,引入光学环形器,设计了一 种全反射共孔径式激光测距系统,激光发射系统与激光接收系统共用一个4倍望远系统,激光 发射系统在其基础上后接一个5倍望远系统,激光接收系统在基础上后接一个激光聚焦光学 系统。对系统进行公差分析与可靠性分析,确定了其加工材料、加工方法以及加工与装调上的 精度与实际应用的可行性。为了节约加工成本,缩短加工周期,降低装调难度,系统较多使用 二次曲面。整个系统成像质量好,能量集中度高,结构紧凑,重量轻,满足实际应用需求。 关键词:反射光学系统;激光测距;共孔径;光学环形器;小型化 中图分类号:TN29 文献标识码:A DOI:10.3969/j.issn.1001-5078.2017.05.016

Design of reflective laser ranging optical system with common aperture

XIE Gui-juan, WU Jian, LI Chang-zhen

(North China Research Institute of Electro-optics, Beijing 100015, China)

Abstract: Based on the principle of laser ranging system and the optical characteristics of the reflective system, an all reflective laser ranging system with common aperture was designed by introducing optical circulator. The laser emitting system and receiving system share one $4 \times$ telescopic system. On this basis, the laser emission system adds one $5 \times$ telescopic system and the laser receiving system adds a laser focusing system. By the tolerance analysis and reliability analysis of the system, the processing materials, processing methods, as well as the precision of processing and installation and the feasibility of practical application were determined. In order to save costs, shorten the processing cycle, reduce the difficulty of alignment, the system mainly adopts quadric surface mirrors. Simulation results show that the whole system had good image quality, high energy concentration, compact structure and light weight, which can meet the requirements of practical application.

Key words: reflective optical system; laser ranging; common aperture; optical circulator; miniaturization

1 引 言

随着激光器技术的发展与成本的降低,激光测 距机已经由军事应用拓展到民用市场。测距机的远 测程,小型化,低功耗以及良好的环境适应性等是激 光测距机的重要研究方向。目前比较常用的激光测 距方法为脉冲激光测距和激光相位测距,基本原理 如图1所示,激光发射处理部分通过受调制的激光 器对待测目标发射一束激光束,激光接收处理部分 接收待测目标反射回来的回波信号,测距信号进行 处理与计算,获得待测目标距离^[1-2]。由于激光器 的光束发散角比较大,若直接使用,到达目标处的光 斑直径较大,单位面积能量密度小,反射到接收系统

作者简介:谢桂娟(1991 -),女,硕士,助理工程师,主要从事激光测距,光学系统设计,装调等方面的研究。E-mail:suvillaxgj@126.com **收稿日期:**2016-12-02

的能量弱,系统测距距离就很短,故激光发射系统会 在激光器后面加上一个光学系统,来压缩发散角。 为了提高接收系统的灵敏度和信噪比,减小杂散光 的干涉,提高系统精度和测距距离,在接收装置前也 要加上光学系统,将从目标反射回来的激光能量会 聚到探测器上。

Fig. 1 The basic principle of laser rangefinder system

对于激光测距系统而言,可以通过提高激光发 射功率,减小激光发散角,增大激光接收口径以及采 用高灵敏度探测器等手段来提高测程^[3]。针对现 有激光器技术而言,提高激光发射功率,过度压缩激 光器的发散角会导致成本比较高,因此激光测距系 统常常通过增大激光发射光学系统的扩束倍率来减 小发散角,这直接导致了激光发射系统尺寸会变大, 为了尽可能的接收发射目标能量,激光接收口径也 会同样变大。为了能精简结构,保证测程,本文提出 了一种激光发射与接收共孔径光学系统设计。

2 系统设计原理

针对大扩束倍数的发射光学系统而言,系统的 出射孔径比较大,与此同时,接收系统口径也会比较 大,传统的透射式光学系统为了满足大的扩束倍数 与发射接收孔径,必定会复杂化光学系统,这就导致 了光学系统体积大,重量大,能量损失大等问题。为 了解决这个问题,本文提出了反射式光学系统设计, 能极大的满足系统大口径,小体积,轻量化等 要求^[4]。

对于大扩束倍数发射光学系统,为了保证系统 的结构稳定性以及光束质量,可通过两次扩束来 实现。

对于接收光学系统,为了降低背景光的噪声,需 要在光路中加入干涉滤波片,由于干涉滤波片的中 心波长会随着光束入射角度的改变而改变,故干涉 滤波片一般会置于平行光路中,且垂直光路,而系统 接收孔径比较大,无法直接在入射光处加入滤波片, 所以接收光学系统可以通过一次扩束再进行聚焦来 实现。

为了满足系统小型化需求,精简系统结构,可让 激光发射系统二次扩束部分与激光接收系统扩束部 分共光路,为了能分离出发射激光光束与接收激光 光束,本文引入了光学环形器^[5-6]。

光学环形器的结构示意图如图 2 所示,其中,偏 振分光镜可以将入射的自然光分解成垂直于入射面 (主截面)振动的反射线偏振光和平行于入射面振 动的投射线偏振光。45°法拉第旋转器可以将入射 偏振光的偏振方向旋转 45°,它与光线传播方向无 关,只与磁场方向有关。45°左旋石英晶体使入射光 线的偏振方向逆时针旋转 45°(对着光的传播方向 观察)。从端口 1 入射的光线,被偏振分光镜分解 成两偏振态相互垂直的线偏振光,由于 45°法拉第 旋转器和 45°左旋石英晶体的旋光方向是相反的, 所以光线的偏振方向不发生变化,经过偏振分光镜 2 合束,从端口 3 输出。从端口 2 入射的光线,此时 的 45°法拉第旋转器和 45°左旋石英晶体的旋光方 向是相同的,所以光线的偏振方向会发生 90°偏转, 经过偏振分光镜 1 合束,从端口 1 输出。

Fig. 2 Layout oroptical circulator

针对本激光测距系统,在激光发射系统与激光 接收系统共光路后部,加入光学环形器,分离出激光 发射与接收系统光路,再进行后续设计。

3 激光测距光学系统设计

3.1 设计参数

设计参数如表1所示。

表1 光学设计参数

Tab. 1 Parameters of optical design

激光发射	系统	激光接收系统		
扩束倍率	20 ×	接收口径	160 mm	
入瞳直径	8 mm	接收视场角	0.5 mrad	
准直后激光发散角	0. 2 mrad	焦距	800 mm	

3.2 系统设计

根据设计参数要求,使用两片反射镜组成4倍 望远系统,对激光发射系统进行4倍扩束,对激光接 收系统进行4倍孔径压缩。系统入瞳直径160 mm, 两片反射镜皆为二次曲面,其具体参数见表2。为 了防止中心遮挡,对系统的光瞳设置了160 mm的 偏瞳量,其结构示意图如图3 所示。

图 3 4×望远系统结构图 Fig. 3 Layout of 4× telescopic system

表2 4×望远系统结构参数

Tab. 2 Parameters of $4 \times$ telescopic system

	曲率半径/mm	厚度/mm	二次系数
主镜	- 640	- 240	- 0. 9973
次镜	- 160	—	- 0. 9892

在4倍望远系统后面,接入光学环形器端口1, 由光学环形器通光原理及激光测距系统测距原理可 知,端口2接激光发射系统5倍扩束系统,端口3接 激光接收系统聚焦部分。

对于5倍扩束系统,系统入瞳直径40 mm,同样 通过两片二次曲面反射镜来实现,对系统的光瞳设 置了40 mm的偏瞳量。系统参数见表3,其结构示 意图如图4所示。

图 4 5×望远系统结构图 Fig. 4 Layout of 5× telescopic system

₹	Ē	3	5	×	望	沅	系	统	结	构	怣	数
~	~	-	-	· ·	-		~1	-/14	-4	1.7	~	- 75/1

Tab. 3 Parameters of $5 \times$ telescopic system

	曲率半径/mm	厚度/mm	二次系数
主镜	- 160	- 64	- 0. 9946
次镜	- 32		-0.9733

对于激光接收聚焦系统,由于视场角度较小,为 了简化结构,可以采用两镜三反的结构来实现聚 焦^[7-8]。系统入瞳直径 40 mm, *F* 数为 5,主镜为高 次非球面镜,次镜为二次曲面,对系统的光瞳设置了 70 mm 的偏瞳量,主镜和三镜通过共用一块反射镜 来实现三次反射聚焦成像。系统参数见表 4,其结 构示意图如图 5 所示。

图 5 接收聚焦系统结构图 Fig. 5 Layout of laser focusing system

表4 接收聚焦系统结构参数

Tab. 4 Parameters of laser focusing system

	曲卖业公/	百 亩/	高次非球面系数		
	西平十位/ ㎜	序度/ ㎜	conic	4th	
主镜	- 196. 85	53.05	- 1	6. 8324×10^{-9}	
次镜	-97.32	53.05	- 2. 3905	0	
三镜	- 196. 85	- 85	- 1	6. 8324 × 10 ⁻⁹	

综上,发射光学系统结构图如图 6 所示,在其后 加上焦距为 100 mm 的理想透镜分析,可得到系统 点列图,MTF 曲线图以及包围圈能量分布图分别如 图 7,图 8,图 9 所示,由 MTF 曲线图以及点列图可 知,系统的成像质量接近衍射极限,包围圈能量分布 图反映了光斑能量集中程度,由图 9 可知,系统光斑 直径为 0.07 mm 时,各个视场的能量集中度皆大于 95%,能量分布比较集中。

图 6 发射光学系统结构图 Fig. 6 Layout of laser emission system

图 7 发射光学系统点列图

Fig. 7 Spot diagrams of laser emission system

图 8 发射系统 MTF 曲线图 Fig. 8 MTF curve of laser emission system

接收系统结构图如图 10 所示,系统点列图, MTF 曲线图以及包围圈能量分布图分别如图 11, 图 12,图 13 所示,由图可知,系统的成像质量接近 衍射极限,系统光斑直径为 0.07mm 时,各个视场 的能量集中度皆大于 98%,成像效果好,能量分布 比较集中。

图 10 接收系统光学系统结构图 Fig. 10 Layout of laser receiving system

Fig. 11 Spot diagrams of laser receiving system

图 12 接收系统 MTF 曲线图 Fig. 12 MTF curve of laser receiving system

Fig. 13 Diffraction Encircled energy of laser receiving system

3.3 公差分析

运用 Codev 光学软件进行系统公差分析,来确定 光学系统在加工与装调上的精度与实际应用的可行 性^[9]。运用 RMS 波像差作为评判标准,对于全反射 系统,加工公差可只考虑光学系统元件的曲率半径公 差、面型公差、表面不规则度公差,装调公差只考虑光 学元件的间隔、偏心和倾斜等公差。分别对激光发射 光学系统和激光接收光学系统进行公差分析,通过不 断收紧公差较敏感项和放松公差不敏感项,使得系统 在引入公差之后的 RMS 波像差变化值不大于 0.07 个波长,收紧后的敏感公差分别如表5、表6所示。

表5 发射光学系统敏感公差分配

Tab. 5 Sensitive tolerance allocation

of laser emission system

Tolerance Type	Surface No.	Change		
	S1	0. 5'		
DLA	S2	0.8′		
	S3	0. 8′		
	S1	0.5'		
DLB	S2	0. 8′		
-	S3	0. 8′		
DIT	S1	0.015 mm		
DLT	S3	0.015 mm		
	S1	0.5		
	S2	0.3		
CIN/CID	S3	0.5		
	S4	0.5		

在表 5、表 6 的公差范围下,激光发射与接收光 学系统的 RMS 公差分布曲线图分别如图 14,图 15 所 示。由图表可知,第一面与第二面共光路的反射镜在 实际装调时的倾斜以及激光发射与接收光学系统各自的第一面与第三面反射镜的中心间距对整个测距系统的性能影响比较大,需要重点控制它们的精度。同时,系统中对表面精度要求较高是共光路中的第二面反射镜,可求得其 PV 值约 520 nm,RMS 值 80 nm,而现有加工水平所能达到的面型精度为 PV 值200 nm,RMS 值 25 nm,故此系统满足实际加工要求。

- 表6 接收光学系统敏感公差分配
- Tab. 6 Sensitive tolerance allocation

of laser receiving system

Tolerance Type	Surface No.	Change
DLA	S1	0.8′
	S2	1'
DLB	S1	0.8′
	S2	1'
DLT	S1	0.01 mm
	S3	0.01 mm
CYN/CYD	S2	0.5

3.4 整体布局

为了使整个系统空间得到充分利用,在接收光路处加入反射镜转折光路,使得结构更加紧凑,激光测距系统光路示意图如图 16 所示,系统总体长度不大于 470 mm,满足系统小型化需求。

3.5 系统可靠性分析

为了保证系统实际使用性能的可靠性,需对系统材料以及加工方法进行分析。

对于激光发射光学系统,在激光出光处的能量 密度比较大,用普通的光学玻璃材料很容易被打坏, 所以对于直接接收激光器出射光束的5倍激光扩束 系统的两片发射镜以及其后续的光学环形器皆采用 抗强激光损伤的石英玻璃,对于4倍扩束系统,由于 出射光束已经经过5倍扩束系统进行扩束,到达4 倍扩束系统时,光束孔径较大,激光能量密度降低, 此时主要要考虑的是大口径反射镜的热稳定性能以 及热膨胀系数等热力学性能,而微晶玻璃的热稳定 性好,热膨胀系数低,其物理特性不容易受温度影响 等特性则较好的满足使用条件。对于激光接收聚焦 光学系统,由于其口径较小,到达其位置的激光能量 密度较弱,故可以采用金属硬铝材料,其加工周期 短,成本低,可靠性强^[10-11]。

非球面加工的技术很多^[12-13],主要包括计算 机数控单点金刚石技术(SPDT),计算机数制研磨 及抛光技术,光学玻璃模压成型技术以及光学塑 料成型技术等,具体要选用哪种方式加工,需要考 虑加工零件的外形、材料、精度、口径及成本周期 等因素。目前,计算机数控单点金刚石技术主要 用于加工中小尺寸的红外晶体和金属材料的光学 零件,可以直接达到光学表面质量要求,生产效率 高,成本低,但对于玻璃,还需要进一步研磨抛光。 光学玻璃模压成型技术需要先开发超精密加工模 具,成本较高,适合批量生产。计算机数制研磨及 抛光技术不需要模具,加工周期短,适合做低阶非 球面镜,加工精度高。故针对本激光测距光学系 统,结合公差分析的精度要求,接收聚焦光学系统 可采用计算机数控单点金刚石技术,4倍扩束系统 及5倍扩束系统皆采用计算机数制研磨及抛光技 术加工。

4 结 论

本文设计了一种全反射式激光测距激光系统,引入了光学环形器,实现了激光发射系统与接收系统的共孔径结构。由于是全发射式设计,该系统不存在色差,可以满足从可见光到红外的多 谱段成像。为了节约加工成本,缩短加工周期,系 统较多使用二次曲面,仅在对成像质量要求比较 高的接收聚焦光学系统处使用了一面高次非球 面,系统的 MTF 曲线接近衍射极限,成像质量比较 好。对系统进行公差分析与可靠性分析,确定了 其加工材料、加工方法以及加工与装调上的精度 与实际应用的可行性。整个系统组装起来,仅进 行了孔径偏心,各反射镜位置均无倾斜,大大降低 了装调难度,与此同时,通过反射镜折叠光路,使 整个系统空间得到充分利用,结构更加紧凑,满足 了系统小型化需求。

参考文献:

- [1] LIU Feng. Development and application of the pulsed LD rangefinder[J]. Infrared and Laser Engineering, 2003, 32 (2):56-60. (in Chinese)
 刘锋. 脉冲半导体激光测距机的研制及应用[J]. 红外 与激光工程,2003,32(2):56-60.
- [2] CHEN Qiansong, YANG Chengwei, PAN Zhiwen, et al. A brief Introduction on the development of laser time-offlight distance measurement technology[J]. Laser & Infrared, 2002, 32(1):7-10. (in Chinese) 陈千颂,杨成伟,潘志文,等. 激光飞行时间测距关键 技术进展[J]. 激光与红外, 2002, 32(1):7-10.
- XU Zhongsheng, ZHONG Shengyuan, DUAN Yuhong, et al. Study on application of new type laser ranging mode
 J]. Ship Electronic Engineering, 2009, 178(4):178 180. (in Chinese)

许中胜,钟声远,段育红,等.新型激光测距模式的应 用研究[J].舰船电子工程,2009,178(4):178-180.

[4] LI Xugang, LI Yingcai, MA Zhen, et al. Coxial three-mirror-anastigmat system of high-resolution space camera [J]. Journal of Applied Optics, 2009, 30(5):717 - 723. (in Chinese)

李旭刚,李英才,马臻,等.高分辨率空间相机共轴三 反光学系统实现形式研究[J].应用光学,2009,30 (5):717-723.

- [5] SU Yongdao, WANG Bingxia. Research and design of error self-healing high-isolation quasi-four-port optical circulator[J]. Chinese Journal of Lasers, 2009, 36(11): 2928 2933. (in Chinese)
 苏永道,王炳霞.误差自愈型高隔离度准四端口光环形器的研究与设计[J].中国激光, 2009, 36(11): 2928 2933.
- [6] YE Xiaohua, YE Huiliang, HUANG Xuguang. Proposal and design of a 4 – port loop optical circulator[J]. Acta Photonica Sinica, 2009, 38(7):1171 – 1175. (in Chinese) 叶小华,叶会亮,黄旭光. 反射型四端口闭环光环行器

的设计[J]. 光子学报,2009,38(7):1171-1175.

- [7] ZHAO Wencai. Design of improved off-axial TMA optical systems[J]. Optics and Precision Engineering, 2011, 19 (12):2837-2843. (in Chinese)
 赵文才.改进的离轴三反光学系统的设计[J]. 光学 精密工程,2011,19(12):2837-2843.
- [8] GUO Yongxiang, LI Yingcai, LÜ Baobin, et al. Noval design of two-mirror three-reflection optical system [J].
 Journal of Applied Optics, 2009, 30(6):916 220. (in Chinese)

郭永祥,李英才,吕保斌,等.一种新型的两镜三反射

光学系统设计[J].应用光学,2009,30(6):916-220.

- [9] Jean-Pierre Véran, John Pazder, Glen Herriot, et al. Tolerancing the fabrication errors of static optical elements for ELT-size wide-field AO systems [C]. Proc. of SPIE, 2012,8447;84471D.
- [10] CHEN Fei, MENG Shaoxian. Damage mechanism of optical materials [J]. Progress In Physics, 1998, 18(2): 187-206. (in Chinese)
 陈飞, 孟绍贤. 光学材料的破坏机理[J]. 物理学进展, 1998, 18(2): 187-206.
- [11] DUAN Xiaofeng, WANG Yuefeng, NIU Yanxiong, et al. Analytic calculation and evaluation of thermal and mechanical damage in optical materials induced by laser
 [J]. Chinese Journal of Lasers, 2004, 31 (12):1455 -1459. (in Chinese)
 段晓峰,汪岳峰,牛燕雄,等.激光照射光学材料热力 效应的解析计算和损伤评估[J].中国激光,2004,31 (12):1455 - 1459.
- [12] ZHANG Feng. Fabrication and testing of precise off-axis convex asphere mirror[J]. Optics and Precision Engineering,2010,18(12):2557-2563. (in Chinese) 张峰. 高精度离轴凸非球面反射镜的加工和检测[J]. 光学 精密工程,2010,18(12):2557-2563.
- [13] PAN Junhua. The design, manufacture and test of the aspherical optical surfaces [M]. Suzhou: Soochow University Press, 2004:131 140. (in Chinese)
 潘君骅. 光学非球面的设计、加工与检测 [M]. 苏州: 苏州大学出版社, 2004:131 140.