文章编号:1001-5078(2017)09-1181-05

·图像与信号处理 ·

多波段和查找表预测值校正的高光谱图像压缩

张海涛,曹博甫,刘万军

(辽宁工程技术大学软件学院,辽宁 葫芦岛 125105)

摘 要:为了提高高光谱图像无损压缩的压缩比,提出了一种利用多波段图像和查找表预测值 校正的高光谱图像无损压缩方法。首先,利用当前被压缩波段图像的前三个波段图像计算 LAIS;然后对获取到的查找表预测值进行两次校正;最后求出预测残差,采用自适应算术编码 方法进行编码。对该方法进行了理论分析和实验验证。结果表明,针对美国国家航空航天局 提供的 AVIRIS 图像中的 Moffett Field 图像的不同区域和不同波段进行实验,所提出的方法比 LAIS - LUT 压缩比提高了 0.09~0.34。

关键词:高光谱图像;无损压缩;预测方法;查找表;空间相关性;谱间相关性 中图分类号:TP751.1 文献标识码:A DOI:10.3969/j.issn.1001-5078.2017.09.023

Compression of hyperspectral images based on multi-band images and lookup table prediction correction

ZHANG Hai-tao, CAO Bo-fu, LIU Wan-jun

(School of Software Engineering, Liaoning Technical University, Huludao 125105, China)

Abstract: In order to improve the compression ratio of lossless compression of hyperspectral images, a lossless compression method of hyperspectral images was proposed based on multi – band images and lookup table prediction correction. First, LAIS was calculated by using images from three previous bands of current bands; and then the lookup table prediction value was corrected two times; finally the prediction residual error was calculated, and the data were encoded with adaptive arithmetic coding method. Theoretical analysis and experimental verification show that, compared with LAIS – LUT, the compression ratio of the proposed method is increased by $0.09 \sim 0.34$ in different areas and bands of Moffett Field image from NASA's AVIRIS images.

Key words: hyperspectral image; lossless compression; prediction algorithm; lookup table; spatial correlation; spectral correlation

1 引 言

近年来,图像传感器产生的大量图像数据被广泛 应用于各个领域,例如天文学、海洋学、气象学等等。 随着高光谱传感器的应用,人们可以获得具有更高空 间和谱间分辨率的高光谱地理图像。数据压缩技术 通过降低图像传输延迟、提高可处理数据容量,在图 像的传输和处理方面起到了重要的作用。许多的高 光谱图像应用对于原始图像的质量有较高的要求,因 此在数据压缩时往往需要采用无损压缩的技术。 高光谱图像存在同波段相邻像素间的空间相关 性和相邻波段中像素间的谱间相关性,也称光谱相关 性。传统的对于二维图像的压缩方法能够消除图像 中的空间相关性,但是在高光谱图像中,谱间相关性 一般要强于空间相关性^[1]。因此,为提高压缩效果, 所采用的方法必须有效地消除图像中的谱间相关性。

高光谱图像的压缩方法主要有三大类:基于预 测的方法、基于变换的方法和基于矢量量化的方法。 基于变换的方法费时较多,且计算方法比较复杂,在

基金项目:国家自然科学基金项目(No. 61172144)资助。

作者简介:张海涛(1974-),男,博士,教授,主要从事图形图像处理,高光谱图像压缩方面的研究。E-mail:Intuzht@163.com 收稿日期:2017-02-14;修订日期:2017-03-08

无损压缩中并没有明显的优势^[2]。由于编码的高 复杂度,矢量量化算法在高光谱图像压缩中应用较 少^[3]。基于预测的方法在高光谱图像无损压缩中 得到了广泛应用^[4],因为这一类方法较为简单,而 且压缩效果好。杨明龙提出了一种利用 LOCO - I 和 DPCM 进行预测的方法^[5]。高放等提出了结合 K - 均值聚类和传统递归最小二乘法的方法^[6]。Li 等人提出了结合自适应搜索阈值和三步预测的压缩 方法^[7]。MIELIKAINEN 等人提出了结合聚类线性 预测和自适应预测长度的压缩方法^[8]。

MIELIKAINEN 提出了一种基于查找表 LUT (Lookup Table)的预测方法^[9]。基于查找表的方法 主要是消除图像的谱间相关性,有较好的压缩效果。 HUANG 等人对查找表的方法进行了改进,提出了 局部平均谱间比例 LAIS (Locally Averaged Interband Scaling)的概念,以及借助 LAIS 实现多查找表 预测的方法 LAIS-LUT^[10]。何艳坤等在 LAIS-LUT 中,针对预测的残差利用偏置值进行调整,提升了一 定的压缩比^[11]。宋金伟等利用 Yule-Walker 方程建 立线性预测模型,并结合了查找表实现了图像的压 缩^[12]。Gao 等人提出了改进的 LAIS 查找表方 法^[13]。Acevedo 等人使用查找表进行压缩时,引入 了可信度的概念,提高了压缩效果^[14]。

传统的 LAIS – LUT 算法使用的是当前被压缩波 段的前一波段的图像计算 LAIS 及 LAIS 参考值,而前 一波段的图像虽然在通常情况下在总体上与当前波 段的相关性最高,但在图像的局部区域,可能前一波 段的图像与当前波段的相关性并不是最高,因此对于 这类区域,如果采用其他波段的图像计算 LAIS 及其 参考值,可以得到更好的效果。本文提出了一种利用 了多波段图像和查找表预测值校正的压缩算法。

2 压缩算法

2.1 利用多波段图像计算 LAIS 参考值

LAIS – LUT 算法中的重要步骤之一就是计算 局部平均谱间比例 LAIS。LAIS 是利用当前点附近 位置的点,对当前点与其他波段相同位置的点的像 素值比值的近似估计。由 LAIS 可计算出 LAIS 参考 值,LAIS 参考值可以看作是对当前点像素值的一个 预测值。对于某一波段的图像而言,其与当前波段 的图像在当前点周围的局部图像相关性越高,求出 的 LAIS 越接近于真实的比值,LAIS 参考值越接近 当前点的真实值,算法最终算出的预测值效果越好。 高光谱图像具有很强的谱间相关性,对整幅图像而 言,通常情况下,相邻波段的图像间具有最高的谱间 相关性。但是在图像的局部区域,可能出现相邻波 段并不是相关性最高的情况。传统 LAIS 的计算只 利用了前一波段计算 LAIS,而本文考虑引入当前波 段的前三个波段,通过比较图像在局部区域的相关 性,选择相关性最高的波段,计算 LAIS,由此计算出 一个较为理想的 LAIS 参考值。

传统的 LAIS 计算利用的是两个波段在当前点 的左侧、上方和左上方三个位置的点。在本文的方 法中,额外考虑了当前点的右上方的点。从4个位 置中选择3个位置的点用来计算 LAIS。选择的依 据是根据前一波段中4个位置的点与当前位置的点 的像素值的差,去除差值最大的位置,选择剩下的三 个位置的点计算 LAIS。

设当前波段的压缩点为 x_1, x 左侧的点为 x_1, x_1 方的点为 x_2, x_2 左上方的点为 x_3, x_1 左方的点为 x_4, x_1 前 一波段与 x_1 有相同位置的点为 y_1, y_2 反上方的点为 y_2, x_2 左上方的点为 y_3, x_1 上方的点为 y_2, x_2 左上方的点为 z_3, x_1 左侧的点为 z_1, x_2 方的点为 z_2, x_2 左上方的点为 z_3, x_1 上方的点为 z_2, x_2 大上方的点为 z_3, x_1 上方的点为 z_4, x_1, x_2, x_2 人間 的点为 b_1, x_2, x_2, x_2 人間 的点为 b_1, x_2, x_2, x_2 人間 的点为 b_1, x_2, x_2, x_2 人間 $y_1, y_2, y_2, x_1, y_2, y_3, y_1, y_2, y_4$ = max(1 $y - y_1 + y_1, y_2 + y_2, y_1, y_2, y_3, y_1, y_2, y_4$), 即右上方与当前位置之间的像 素值差最大,则选择左侧、上方和左上方三个位置 的点计算 LAIS, 其他情况以此类推。

假设选定的三个位置是左侧、上方和左上方。建 立数组 $a_1, a_2, a_3, a_4, a_1 = (x_1, x_2, x_3), a_2 = (y_1, y_2, y_3), a_3 = (z_1, z_2, z_3), a_4 = (b_1, b_2, b_3)$ 。前一波段与当 前波段的局部相关性为 c_1 ,前二波段与当前波段的局 部相关性为 c_2 ,前三波段与当前波段的局部相关性为 c_3 。根据三个波段相关性的大小,选择相关性最高的 波段计算 LAIS。设 $c_{max} = max(c_1, c_2, c_3), p_1 c_{max}$ 表示 几个波段相关性中的最大值, s 为 LAIS 的值,则:

 $s = \begin{pmatrix} (x_1/y_1 + x_2/y_2 + x_3/y_3)/3 & c_1 = c_{\max} \\ (x_1/z_1 + x_2/z_2 + x_3/z_3)/3 & c_1 = c_{\max} \\ (x_1/b_1 + x_2/b_2 + x_3/b_3)/3 & c_1 = c_{\max} \\ & \textcircled{0} p_1 \ \text{b LAIS} \ \& \& \& \& fin, \texttt{M}: \\ p_1 = s \times y \end{cases}$

Lin 和 Hwang 研究了查找表数量对查找表方法 压缩效果的影响^[15],结果表明增加查找表的数量可 以提高压缩的效果,但是随着查找表数量的增加,压 缩效果的提升逐渐减弱,而算法的计算量会增加,降 低效率。本文在综合考虑了算法的效果以及效率的 基础上,选择了三个查找表,从三个查找表的预测值 中选择最佳预测值。

2.2 预测值的校正

- 2.2.1 查找表预测值与 LAIS 参考值的校正
 - 在 LAIS-LUT 算法的计算过程中,实际上得到

了两个不同的预测值:查找表预测值和 LAIS 预测 值。这两个预测值是基于不同的方法获得的,都在 一定程度上反映了当前被压缩点的像素值的真实情 况。白玉杰等在利用两个预测值计算最终预测值时 采用了加权平均的方法[16],权值分别设为1/3和 2/3。为了综合利用两个不同的预测值,求得一个更 好的预测值,本文参考了该方法,但是将两个预测值 的权值设定为 1/2 和 1/2, 即计算两个预测值的平 均值 p 3 作为进行下一步计算所用的预测值。

设查找表预测值为 p2, 则:

 $p_3 = (p_1 + p_2)/2$

2.2.2 基于梯度变化规律的预测值修正

根据当前图像与前一波段图像在水平方向和竖 直方向的梯度变化,可以对 x 和 y 的差 | y - x | 的取 值范围进行推测。如果预测值 p_3 与 y 的差 $| y - p_3 |$ 不满足 | y - x | 的取值范围,对 p,进行修正。修正的 方法为根据梯度变化规律,参考 LIANG 等人提出的 基于混合上下文预测的方法^[17],计算 | y - x | 的预 测值 q,由 q得到一个 x 的预测值 p_4 ,计算 p_3 和 p_4 的 平均值作为最终预测值。

前一波段与当前波段间的水平梯度为: 1 y₃ y_{2} , $|y_{1} - y|$, $|x_{3} - x_{2}|$, 垂直梯度为: $|y_{3} - y_{1}|$, $|y_2 - y|, |x_3 - x_1|,$ 谱间梯度为: $|y_1 - x_1|, |y_2|$ $-x_2$, y_3 , $-x_3$, x_3 , x_3 , x_3 , y_1 , y_2 , x_2 , x_1 , y_2 , x_2 , x_3 , y_2 , x_3 , y_2 , y_3 , y_2 , y_3 , y_2 , y_3 , y_2 , y_3 $| 和 | y_3 - x_3 |$ 进行比较。

如果 | $y_3 - x_3$ | ≥ max(| $y_1 - x_1$ | , | $y_2 - x_2$ |), 说明波段间像素在水平方向和竖直方向的梯度变化 率有下降的趋势。| $y_3 - x_3$ | \ge | y - x | 的可能性更 高。如果此时 | $y_3 - x_3$ | < | $y - p_3$ | , 对 p_3 进行修正。

设 $q = (|y_3 - x_3| + |y_1 - x_1| + |y_2 - x_2|)/3$, 则有 $q < | y_3 - x_3 |$,

 $p_4 = \begin{cases} y + q, p_3 > y \\ y - q, p_3 < y \end{cases}$ 最终预测值 $p = (p_3 + p_4)/2$

 $y_3 - x_3 | \leq \min(|y_1 - x_1|, |y_2 - x_2|),$ 说明波段间像素在水平方向和竖直方向的梯度变化 率有上升的趋势。| $y_3 - x_3$ | ≤| y - x | 的可能性更 高。如果此时 | $y_3 - x_3$ | > | $y - p_3$ |, 对 p_3 进行修正:

设 $q = (|y_1 - x_1| + |y_2 - x_2|)/2, 则有:$

$$q > | y_3 - x_3 |$$

$$p_4 = \begin{cases} y + q, p_3 > y \\ y - q, p_3 < t \end{cases}$$

最终预测值 $p = (p_3 + p_4)/2$

如果 | $y_3 - x_3$ | 在 | $y_1 - x_1$ | , | $y_2 - x_2$ | 之间, 说明波段间像素在水平方向和竖直方向的梯度变化 率不相同。不能推测 |x - y| 的取值。此时不对 p_3 进 行修正,即最终预测值 $p = p_3$ 。

2.3 计算残差及编码

当前被压缩点的像素值减去最终预测值 p,求 出残差,记录残差以及残差的符号,使用自适应算术 编码方法对残差和残差的符号进行编码。

在解压缩时,对于某个像素点,利用已解压部分 的图像信息,根据前文的方法,计算残差值p,再将p 与带符号的残差值相加,即获得该像素点的像素值。 3 实验结果

实验采用了美国国家航空航天局提供的 AVIRIS 图像中的 Moffett Field 图像, Moffett Field 图 像有224个波段。实验所用图像在图像的边缘存在 一部分黑色区域,对黑色区域进行压缩体现不出压 缩算法的优势和作用,因此本实验只选择图像的中 间部分进行压缩。另外,实验所用图像中不同区域 所反映的地物情况差异很大,空间相关性并不相同, 因此为了检验算法在不同空间相关性条件下的压缩 效果,本实验从两幅图像中分别截取若干个图像块, 分别对每个图像块进行压缩。同时,为了检验算法 在图像中不同波段的压缩效果,本实验从两幅图像 中随机选择若干波段进行实验。

对于 Moffett Field 图像,本实验随机选择了 30, 60,90,140,180 波段的图像,图像的大小为 256 × 256, 截取的4个图像块在30波段的图像如图1所示。

Fig. 1 Moffett Field images 本实验采用 JPEG - LS^[18], LUT^[9] 和 LAIS -LUT^[10]作为对照方法。30 波段的 4 个图像在压缩 后得到的残差图像如图2所示。表1至表4是 Moffett Field 图像中4个图像的实验结果。

(c)Moffett Field 残差图像3

图 2 Moffett Field 残差图像 Fig. 2 Moffett Field Residual Images

表 1 Moffett Field	图像1压缩比
-------------------	--------

Tab. 1 Moffett Field image 1 compression ratio

波段	JPEG – LS	LUT	LAIS – LUT	本文的方法	压缩比提升
30	1.644	2.260	2. 438	2.660	0. 222
60	1.660	2.670	2. 987	3. 173	0. 186
90	1. 799	3. 523	3. 877	4.042	0. 165
140	1.805	2.996	3. 182	3. 278	0.096
180	2. 151	2. 748	2. 988	3.081	0. 093

表 2 Moffett Field 图像 2 压缩比

Tab. 2 Moffett Field image 2 compression ratio

波段	JPEG – LS	LUT	LAIS – LUT	本文的方法	压缩比提升
30	1.652	2.361	2. 542	2.692	0.150
60	1.672	2.550	2.806	3.007	0. 201
90	1. 843	3.710	4.030	4. 176	0. 146
140	1.864	3. 118	3. 289	3. 358	0.069
180	2. 240	2. 891	3. 147	3. 216	0.069

表 3 Moffett Field 图像 3 压缩比

Tab. 3	Moffett	Field	image	3	compression	ratio
--------	---------	-------	-------	---	-------------	-------

波段	JPEG – LS	LUT	LAIS – LUT	本文的方法	压缩比提升
30	2. 111	2.807	3.017	3. 173	0. 156
60	2. 234	3.074	3. 367	3. 651	0. 284
90	2. 467	4. 321	4. 691	5.032	0.341
140	2. 451	3.658	3. 829	3. 988	0. 159
180	3. 280	3.662	4. 067	4. 411	0.344

表 4 Moffett Field 图像 4 压缩

Tab. 4 Moffett Field image 4 compression ratio

波段	JPEG – LS	LUT	LAIS – LUT	本文的方法	压缩比提升
30	1.730	2.508	2.704	2.864	0.160
60	1. 792	2.824	3. 182	3.400	0.218
90	1.943	3.870	4. 271	4. 423	0. 152
140	1.949	3. 188	3.360	3.461	0. 101
180	2.354	2. 947	3. 238	3. 379	0. 141

实验中使用的图像自身的地物变化剧烈程度不 相同,因此图像自身的空间冗余度不相同,并且图像 不同的波段与邻近波段图像的谱间相关性也不相 同。JPEG-LS 算法在对图像进行压缩时,只利用了 图像内部的空间相关性,因此 JPEG-LS 算法的压缩 效果在一定程度上反映了图像的空间相关性的强 弱。从实验结果可以看出,4幅图像中,图像3的空 间冗余度最高。

对于 Moffett Field 图像,相比于 LAIS-LUT 算 法,本文的方法的压缩比提升范围在 0.09~0.34。 在每幅图像的不同波段,本文的算法在压缩比上 都有不同程度的提升。在 Moffett Field 图像的4 幅 图像中, JPEG-LS 在图像3的压缩比最高, 说明本 文的算法的压缩比与图像的空间相关性呈现正 相关。

4 结 论

本文提出了一种利用双波段图像和查找表预 测值校正的高光谱图像无损压缩算法。利用当前 被压缩波段图像的前三个波段的图像,择优计算 LAIS,采用了三个查找表,并且对查找表的预测值 进行两次校正。实验结果表明,相比于 LUT 和 LAIS-LUT 方法,本文的算法在压缩效果上有一定 程度的提升。

参考文献:

- [1] GAO Fang, LIU Yu, GUO Shuxu. Lossless compression of hyperspectral images using backward search in context window [J]. Optics and Precision Engineering, 2015, 23 (8):2376-2383. (in Chinese) 高放,刘宇,郭树旭.基于上下文窗口中反向搜索的高 光谱图像无损压缩[J]. 光学 精密工程,2015,23(8): 2376 - 2383.
- [2] MEI Jiangtao, LI Yong. Study on interspectrum-prediction method adopted for compression of hyperspectral image [J]. Computer Engineering and Applications, 2011, 47 (4):188 – 190. (in Chinese)

梅江涛,李勇.采用谱间预测的高光谱图像压缩方法研究[J].计算机工程与应用,2011,47(4):188-190.

[3] LIU Yangchuan, Bayanheshig, CUI Jicheng, et al. Lossless compression of hyperspectral image based on prediction and JPEG2000[J]. Laser & Infrared, 2012, 42(4):452 - 457. (in Chinese)
刘仰川,巴音贺希格,崔继承,等. 基于预测与

JPEG2000的高光谱图像无损压缩方法[J]. 激光与红外,2012,42(4):452-457.

- [4] NIAN Yongjian, XIN Qin, TANG Yi, et al. Distributed lossless compression of hyperspectral images based on multi-band prediction[J]. Optics and Precision Engineering, 2012, 20(4):906-912. (in Chinese) 粘永健,辛勤,汤毅,等. 基于多波段预测的高光谱图 像分布式无损压缩[J]. 光学 精密工程, 2012, 20(4): 906-912.
- [5] YANG Minglong. Lossless compression of hyper-spectral image based on prediction [J]. Laser Journal, 2016, 37 (2):34-37(in Chinese)
 杨明龙. 基于预测的高光谱图像无损压缩[J]. 激光杂 志,2016,37(2):34-37.
- [6] GAO Fang, SUN Changjian, SHAO Qinglong, et al. Loss-less compression of hyperspectral images using k-means clustering and conventional recursive least-squares predictor[J]. Journal of Electronics & Information Technology, 2016,38(11):2709-2714(in Chinese).
 高放,孙长建,邵庆龙,等. 基于 K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩[J]. 电子与信息学报,2016,38(11):2709-2714.
- [7] LI C. G, GUO K. Lossless compression of hyperspectral images using three-stage prediction with adaptive search threshold[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7(3): 305 - 316.
- [8] MIELIKAINEN J, HUANG B. Lossless compression of hyperspectral images using clustered linear prediction with adaptive rediction length [J]. IEEE Geoscience and Remote Sensing letters, 2012,9(6):1118-1121.
- [9] MIELIKAINEN J. Lossless compression of hyperspectral images using lookup tables [J]. IEEE Signal Processing Letters, 2006, 13(3):157 - 160.
- [10] HUANG B, SIRRAJA Y. Lossless compression of hyper-

spectral imagery via lookup tables with predictor selection [J]. Proceedings of the SPIE,2006,6365:636501.

[11] HE Yankun, BAI Yujie. Lossless compression of hyper-spectral images based on lookup table and residual offset
 [J]. Laser Technology, 2014, 38(5):643 - 646. (in Chinese)
 何艳坤,白玉杰. 基于残差偏置和查找表的高光谱图

像无损压缩[J].激光技术,2014,38(5):643-646.

- [12] SONG Jinwei, ZHANG Zhongwei, CHEN Xiaomin. Hyperspectral imagery compression via linear prediction and lookup tables [J]. Optics and Precision Engineering, 2013,21(8):2201-2208. (in Chinese) 宋金伟,张忠伟,陈晓敏. 利用线性预测与查找表的高光谱图像压缩[J]. 光学 精密工程,2013,21(8): 2201-2208.
- [13] GAO Z C, ZHANG X L. Lossless compression of hyperspectral images using improved locally averaged interband scaling lookup tables [C]//Proceedings of the 2011 International Conference on Wavelet analysis and Pattern Recognition, 2011.
- [14] ACEVEDO D, RUEDIN A. Lossless compression of hyperspectral images: look-up tables with varying degrees of confidence [C]//IEEE International Conference on Acoustics Speech and Signal Processing,2010.
- [15] LIN C C, HWANG Y T. Lossless compression of hyperspectral images using adaptive prediction and backward search schemes [J]. Journal of Information Science and Engineering, 2014, 27(2):419-435.
- [16] BAI Yujie, HE Yankun, MA Yu, et al. Lossless compression of hyperspectral images based on lookup table and two estimated values[J]. Laser & Infrared, 2014, 44(7): 819-823. (in Chinese)
 白玉杰,何艳坤,马玉,等. 基于双估计值的查找表高光谱图像无损压缩[J]. 激光与红外, 2014, 44(7): 819-823.
- [17] LIANG Y, LI J. P, GUO K. Lossless compression of hyperspectral images using hybrid context prediction [J]. Optics Express, 2012, 20(7):8199 – 8206.
- [18] Weinberger M J, Seroussi G, Sapiro G. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS[J]. IEEE Trans. Image Process, 2000,9(8):1309-1324.