文章编号:1001-5078(2018)04-0420-05

·激光应用技术·

后向散射法测量蒸汽参数的 CCD 相机接收角优化

黄竹青^{1,2},唐振洲¹,黄章俊¹,周 凌¹,罗 赟¹

(1. 长沙理工大学能源与动力工程学院,湖南 长沙 410114;2. 湘潭大学,湖南 湘潭 411105)

摘 要:为了揭示汽轮机内湿蒸汽的具体参数和实现汽轮机湿蒸汽参数的有效测量,对基于后向散射法及联合 CCD 相机成像的湿蒸汽参数测量模型,提出了新的 CCD 相机接收角度,分析 了不同散射角度对散射比的影响。结果表明,当散射光接收角度为后向 7°时,可获取到最佳 的散射比,此时信噪比最强,为最合适的接收角度。通过对后向 7°角的散射光强在不同尺度 分布参数 K、水滴群的质量中间半径 r_{0.5}、水滴数密度 N 下所呈现的变化规律进行分析验证,结 果表明后向 7°角的散射光强变化趋势与理论变化相吻合,从而为后向散射法测量湿蒸汽参数 的研究提供依据。

关键词:后向散射;湿蒸汽;接收角度;优化

中图分类号:TP274 文献标识码:A **DOI**:10.3969/j.issn.1001-5078.2018.04.002

Optimization of CCD camera receiving-angle for backscatter measurement of steam humidity

HUANG Zhu-qing^{1,2}, TANG Zhen-zhou¹, HUANG Zhang-jun¹, ZHOU Ling¹, LUO Yun¹

(1. College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2. Xiangtan University, Xiangtan 411105, China)

Abstract: In order to reveal the specific parameters and achieve the effective measurement of the wet steam parameters in steam turbines, a new receiving-angle of CCD camera is put forward for the measurement model of wet steam parameters based on the backscatter method and CCD camera imaging. The influence of different scattering angles on the scattering ratio is analyzed. The results show that the optimal scattering ratio and the maximum SNR can be obtained when the receiving-angle of scattered light is backward 7°, which means a most suitable receiving-angle. By analyzing and verifying the change law of the scattered light intensity at the backward angle of 7° along with different scale distribution parameters K, mass intermediate radius $\bar{r}_{0.5}$ of water droplets group and number density N of water droplets, the trend of the scattered light intensity at the backward angle of 7° is consistent with the theoretical change trend, which may provide a basis for study on wet steam parameters measured by backscatter method.

 $Key \ words: {\tt backscatter}; wet \ steam; receiving-angle; optimization$

1 引 言

常规电站中大型冷凝式蒸汽透平的末几级和

核电站中透平的全部级都在湿蒸汽状态下工作。 湿蒸汽的存在不仅降低了汽轮机的运行效率,而

基金项目:国家自然科学基金项目(No.51376025);湖南省教育厅项目(No.15C0035)资助。 作者简介:黄竹青(1964 -),女,教授,博士,从事湿蒸汽测量方面的研究。 通讯作者:唐振洲(1994 -),男,硕士研究生,从事湿蒸汽测量方面研究。E-mail:17308412413@163.com 收稿日期:2017-06-24;修订日期:2017-08-17 且湿蒸汽中的水滴会对高速运行的汽轮机动叶片 造成撞击、冲蚀,给汽轮机的经济性和安全性造成 极大的危害。测量蒸汽湿度及水滴颗粒粒径分布 对于了解汽轮机末级的工作状态,为汽轮机安全 经济地运行提供保障,具有很强的理论价值和现 实意义^[1]。

目前蒸汽湿度测量的方法很多,如热力学法、 光学法、化学法等,但适用于汽轮机内流动湿蒸汽 湿度的测量方法主要是热力学法和光学法^[2-6]。 现阶段光散射法依托其测量范围更广,精度更高, 测量速度更快,与计算机相整合后更便于在线测 量的优势,已经逐渐成为湿蒸汽参数测量的主要 方法之一,具有实现实时监测湿蒸汽参数的 前景^[7]。

为了探究汽轮机内湿蒸汽的具体参数和实现汽 轮机湿蒸汽参数的有效测量,本文主要分析研究了 后向散射法及联合 CCD 相机成像的湿蒸汽参数测 量模型在不同散射角度下散射光强的变化趋势,得 到了最适合后向散射测量湿蒸汽的接收角度为后向 7°。并且以尺度分布参数 K、质量中间半径 r_{0.5}、水 滴数密度 N 三个参数为变量,对后向 7°角的散射光 光强分布进行了验证。结果表明,后向 7°角的散射 光强变化趋势与理论变化相吻合,为湿蒸汽研究提 供了一定的依据。

2 测量实验模型

后向散射法测量蒸汽湿度以 Mie 散射理论为 基础,该理论阐述的是球形颗粒的散射特性,描述 了散射光中包含水滴粒径、粒径分布、水滴浓度等 信息。因此,通过激光器和 CCD 相机联合作用,接 收水滴群在某个角度范围内的散射光信号,然后 根据 Mie 散射理论对测量数据进行反演,即可求 得湿蒸汽中水滴粒径、粒径分布和浓度等参 数^[8-9],根据这些参数,利用水蒸气湿度公式即可 求得水蒸气湿度。

后向散射法蒸汽测量模型如图1所示,实验模型主要由模拟汽缸、激光器和 CCD 相机组成。从激光器发出的入射光束水平穿过湿蒸汽区,会向各个方向发生散射,CCD 相机固定在观察孔的上方,接收该散射角度下的散射光。CCD 相机的视场角范围与激光光束传播方向的重合区域即为测量区域。

如图 1 所示,光束穿过模拟汽缸到达探测器的过程可分为三个过程:衰减(A→B)→散射(B)→衰减(B→C)。此过程中,A→B、B→C两个衰减过程遵循 Lambert-Beer 定律,B 的散射过程遵循 Mie 散射理论^[10-11]。

假设入射光强为 *I*₀,则 CCD 相机最终接收到的 散射光强 *I*₃为:

$$I_{3} = I_{0} \exp(-\tau L_{01}) \left\{ \frac{\lambda^{2} V N}{8\pi^{2}} \int_{r_{1}}^{r_{2}} \int_{\theta_{1}}^{\theta_{2}} [i_{1}(\theta) + i_{2}(\theta)] \cdot \sin(\pi - \theta) \cdot \Delta \phi f(r) d\theta dr \right\} \exp(-\tau L_{02}) = I_{0} \exp[-\tau (L_{01} + L_{02})] \left\{ \frac{\lambda^{2} V N}{8\pi^{2}} \int_{r_{1}}^{r_{2}} \int_{\theta_{1}}^{\theta_{2}} [i_{1}(\theta) + i_{2}(\theta)] \cdot \right] \cdot$$
(1)

$$\ln(\pi - \theta) \cdot \Delta \phi f(r) \, d\theta dr \} \tag{1}$$

式中, L_{01} 为衰减区(A→B)的长度; L_{02} 为衰减区(B →C)的长度; $\Delta \phi$ 是极化角; θ_1 和 θ_2 表示散射角范 围; V表示散射区间的体积; $r_1 \ x_2$ 为水滴粒径范 围; λ 为入射光波长。

综合以上可知, L_{01} 、 L_{02} 、 $\Delta \phi$ 、 θ_1 、 θ_2 和 V可以 通过几何关系计算得到, 根据公式(1), 在设定了水滴 粒径范围 r_1 、 r_2 、入射光光强 I_0 和入射光波长 λ 后, CCD 相机最终接收到的散射光强 I_3 只与水滴质量中 间半径 $\bar{r}_{0.5}$ 、尺度分布参数 K和水滴数密度 N 有关。

3 湿蒸汽后向光散射特性

由 Mie 散射理论和公式(1)可知,散射角为 90°~270°的区间为后向散射区间,并且 CCD 相机 的接收角和散射角是互补关系。由此,设水滴半径 r的变化范围为0.01~2.5 μ m,激光波长 λ =0.532 μ m, 折射率 m =4/3,以尺度分布参数 K 和质量中间半径 $\bar{r}_{0.5}$ 为变量时,编程计算得水滴群的后向散射规律 如图 2 所示,后向散射光光强以 180°为中心,呈对 称分布,且左右两边分别存在两个波峰,所以,最优的接收角应从散射角为140°~160°和170°~175°这两个区间内选取。

由图 2 可知,在散射角为 170°~175°区间内,散射 光强明显要强于后向 30°所对应的散射角 140°~160° 区间。从图 2(a)可见,当尺度分布参数 K 值增大时, 散射光强明显增强,这是因为 K 值越大,水滴群的粒径 分布趋于集中,表现出单个水滴的散射特性。从图 2 (b)可见,质量中间半径的变化对整个散射光强的大小 有明显的改变,随着质量半径的增大,水滴群的散射光 强增大,当增大到一定程度时,散射光强反而变小,例 如 $\bar{r}_{0.5} = 2$ µm 时的散射光强就比 $\bar{r}_{0.5} = 1.5$ µm 时小。

4 系统数据计算及影响分析

由湿蒸汽后向光散射特性分析可知,在散射角 170°~175°所对应的后向 5°~10°区间中散射光的 光强相比于后向 30°要更加集中,散射光强越大信 噪比越大,图像受噪声干扰越小,更利于实验取样。 因此,为了得到该区间最佳接收方位角,设定仿真条 件为激光波长 $\lambda = 0.532 \ \mu m$,折射率 m = 4/3,CCD 相 机的分辨率为 1600 × 1200 pixels,视场角为 5.0° × 3.7°时,水滴粒径范围为 10⁻¹⁰~5×10⁻⁶m,水滴质 量中间半径 $\bar{r}_{0.5} = 1.75 \ \mu m$, K = 3.5,水滴密度 $N = 0.55 \times 10^{11}$,通过 MATLAB 进行仿真计算,分别 得到接收角为 5°~10°。该接收角度区间的散射光 强对比如图3所示。

从图 3 可见,随着接收角从 5°到 10°增大时,散 射光强呈先增加后递减趋势,与图 2 中接收角在 170°~175°时散射光强先增加后降低的变化趋势对 应,因此满足实验要求。可以看到,当接收方位角为 7°时,散射光强明显高于其他角度,并且在 CCD 相 机横向像元方向呈现出先增强后减弱的趋势,当 CCD 相机横向像元为 800 时达到极值。

由 Mie 散射理论可知,接收角度不同,散射光强 会有很大的变化。因此,为了得到适合后向测量散 射光强的接收角度,在相同的设定条件下,对 7°和 30°角进行比较,结果如图4所示。

Fig. 4 Comparison of scattered light intensity with receiving-angle of 7° and 30°

当接收角为后向 7°时,散射光强明显强于 30°。 由图 4 可见,后向 7°时的散射光强在横向像元方向 是呈上升趋势,在横向像素点 800 的位置达到最大。 而 30°的散射光强并没有明显的变化趋势,这是因 为后向 7°时的散射光强远远强于后向 30°,从而使 得后向 30°的变化趋势被掩盖。

在上述设定的基本条件下,对后向7°进行数值计算,对各个像元接收到的散射光强进行分析,得到质量中间半径 $\bar{r}_{0.5}$ 、尺度分布参数 K、水滴群密度 N 的变化对各个像元接收的散射光强的影响规律,如图5 所示。

图 5(a) 是保持水滴质量中间半径和水滴数密 度不变,对尺度分布参数 K 进行分析,结果表明,随 着尺度分布参数 K 的增大,各个像元接收到的散射 光强度也越大,这是由于 K 值越大水滴群的半径分 布越集中,散射光强就越接近单一分散系的散射特 性。图像的前半段,曲线分布杂乱,是因为 K 值不 同到 CCD 相机达响应饱和的位置也不同所导致的。

图 5(b)是水滴质量中间半径 r_{0.5} 和尺度分布 参数 K 不变,单对水滴数密度 N 进行分析,由图可 以看出,水滴数密度在某个值以内时,像元接收到的 散射光强是随着水滴数密度的增加而增大的,当水 滴数量达到一定的值以后,散射光强随着水滴数密 度的增加反而减弱,这是因为当微粒浓度达到一定 的值时,透射光强与入射光强的比以自然常数 e 的 几何级数减小,这时水滴群对光强的衰减起主导 作用。

图 5(c)可知,质量半径的越大,水滴群的散射 光强不一定越大,当质量中间半径增大到一定程度 时,散射光强反而变小, $\bar{r}_{0.5} = 2 \mu m$ 时的散射光强 就比 $\bar{r}_{0.5} = 1.5 \mu m$ 时小。这是由于不同质量中间 半径的微粒群的散射特性不同而导致的。

实际测量中,采集到的信号数据通常都伴有一定的噪声,为了更加贴近实际情况,在上述的仿真计算过程中,人为的给模拟数据添加了一定比例的随机噪声,得到接收角度为7°时各个像元对应的散射光强数据,如图5(d)所示。

上述后向 7°角的变化趋势, 与图 2 的变化趋势 相对应, 通过对比可知, 后向 7°的散射光条件优于 后向 30°角。在进行实验测量时, 选择后向 7°角为 接收角更合适。

5 结 论

根据 Mie 散射理论对基于后向散射法的湿蒸汽 参数测量模型中 CCD 相机的接收角度进行优化分析,得出以下结论:

(1) 在水滴半径 r 的变化范围为 0.01 ~ 2.5 μ m,激光波长 λ = 0.532 μ m,折射率 m = 4/3, 以尺度分布参数 K 和质量中间半径 $r_{0.5}$ 为变量的条件下,编程计算得到该模型中水滴群的后向散射光光强以 180°为中心,呈对称分布,在后向 7°处的散射光强明显大于后向 30°处的散射光强。

(2)以该模型为基础,设定仿真条件为激光波

长 λ = 0.532 μm, 折射率 m = 4/3, CCD 相机的分辨 率为 1600 × 1200 pixels, 视场角为 5.0° × 3.7°时, 水 滴粒径范围为 10⁻¹⁰ ~ 5 × 10⁻⁶ m, 水滴质量中间半 径 $\bar{r}_{0.5}$ = 1.75 μm, K = 3.5, 水滴密度 N = 0.55 × 10¹¹。对后向 7°处和后向 30°的散射光光强进行 MATLAB 编程仿真计算,得到后向 7°的散射光光强在 横向像元方向是呈上升趋势, 在横向像素点 800 的位 置,达到最大, 且远远强于后向 30°处的散射光光强。

(3)后向 7°处的散射光光强在不同尺度分布参数 K、质量中间半径 $\bar{r}_{0.5}$ 、水滴数密度 N 下所呈现的变化规律与理论变化趋势相吻合。综上所述,在试验中选择 CCD 相机的接收角度为后向 7°为最佳。

参考文献:

[1] JIAO Ye, HUANGZhuqing, CAOXiaoling et al. Simulation study on steam moisture measurement based on the method of optical back-scattering[J]. Laser Technology, 2013, (3):310-313. (in Chinese)
焦烨,黄竹青,曹小玲,等. 基于激光后向散射测量蒸 汽湿度的仿真研究[J].激光技术, 2013, (3):

汽湿度的仿具研究[J]. 激光技术, 2013, (3);
310-313.

- [2] WANG Shenlong. Study on a method and application of wetness measurement online for steam turbine[D]. Baoding:North China Electric University,2005. (in Chinese) 王升龙. 汽轮机蒸汽湿度在线监测方法及应用研究 [D]. 保定:华北电力大学,2005.
- [3] LIU Jiancheng, LIN Zhihong, WEN Xueyou et al. Recent advances in the technology of moisture removal in steam turbines[J]. Journal of Engineering for Thermal Energy and Power, 2005, (1):1-5. (in Chinese) 刘建成,林志鸿,闻雪友,等. 汽轮机内部除湿技术的发展[J]. 热能动力工程, 2005, 20(1):1-5.
- [4] REN Haoren, SHENG Deren, LU Xuefeng, et al. Calculation of turbine exhaust in online system [J]. Power Engneering, 1998, 18(6):1-4. (in Chinese)
 任浩仁,盛得仁,卢学峰,等. 汽轮机在线性能计算中 排汽烩的确定[J]. 动力工程, 1998, 18(6):1-4.

- [5] ZHANG Hong, CAI Xiaoshu, WANG Xihua. Development of wet steam measurement technologies in steam turbine
 [J]. Thermal Turbine, 2007, 36(1):1-7. (in Chinese) 张弘,蔡小舒, 王夕华. 汽轮机内湿蒸汽实验测量技术 现状[J]. 热力透平, 2007, 36(1):1-7.
- [6] LI Qunlin, LIU Bofeng, XIAOXiang. Image measurement for the diameters of drop in two phase wet steam flow in steam turbine, 2006, (12):6668. (in Chinese)
 李群林,刘波峰,肖湘. 使用照相法测量汽轮机湿蒸汽 中水 滴尺 寸的研究[J]. 中国仪器仪表, 2006, (12):6668.
- [7] WU Wei, QIN Shiqiao, HUANG Zhuqing. A fast inversion method for water droplet size determination in scattering light measurement [J]. Acta Optical Sinica, 2011, (7): 156 160. (in Chinese)
 吴伟,秦石乔,黄竹青.水滴粒径散射测量中的快速反 演方法研究[J]. 光学学报,2011, (7): 156 160.
- [8] HUANG Zhuqing. Investigation of moisture steam characteristic measurement methods in steam turbine based on light scattering[D]. Changsha: National University of Defense Technology, 2010. (in Chinese) 黄竹青. 基于光散射的汽轮机湿蒸汽特性测量方法研究[D]. 长沙:国防科学技术大学,2010.
- [9] ZHANG Heyong, RENDeming, ZHAOWeijiang, et al. Resurch of scattering phase function of spheric particle under polarized state [J]. Opto - Electronic Engineering, 2008,35,(9):71-75. (in Chinese)
 张合勇,任德明,赵卫疆,等. 偏振状态下球形粒子的散射相位函数研究[J]. 光电工程,2008,35,(9):71-75.
- [10] ZHANG Wei, LU Yuan, DU Shiming, et al. Analysis of characteristics of mie scatering [J]. Optical Technology, 2010, (6):936-939. (in Chinese)
 张伟,路远,杜石明,等. 球形粒子 Mie 散射特性分析 [J]. 光学技术,2010, (6):936-939.
- [11] WANG Xianfen, LIU Guangbin, ZHENG Zhong, et al. Onwards continue fraction algorithm for mie scattering and numerical stimulation [J]. Optical Technology, 2009, (4):541-543. (in Chinese)
 王莲芬, 刘光斌,郑重,等. Mie 散射向前递推连分式算法及其数值模拟[J]. 光学技术, 2009, (4):541-543.