Vol. 49, No. 8 August, 2019

文章编号:1001-5078(2019)08-1007-07

·电子电路·

高稳定激光原子磁力仪恒流源电路设计

陈立杰1,黄光明1,杨国卿2

(1. 华中师范大学物理科学与技术学院,湖北 武汉 430079;2. 杭州电子科技大学电子信息学院,浙江 杭州 310018)

摘 要:针对用于原子磁力仪的 895 nm VCSEL 激光器,提出了一种电路结构简单,高稳定性的压控恒流源电路。此电路使用了一种巧妙的精密恒流源电路与一种常见的压控微电流源电路相并联,在保证高稳定性和一定精度的基础上,实现了低成本、小体积和低功耗。通过实验检测表明,恒流源的稳定性优于 10⁻⁶ A(最大波动 0.35 μA),电流步进连续可调,电路面积为 4.5 cm×4.5 cm,最大功耗为 468 mW,能够很好地满足小型激光泵浦的原子磁力仪对激光器的控制要求。

关键词:高稳定性;VCSEL激光器;恒流源;磁力仪 中图分类号:TN707 文献标识码:A DOI:10.3969/j.issn.1001-5078.2019.08.018

Design of high stability constant current source circuit design for laser atomic magnetometer

CHEN Li-jie¹, HUANG Guang-ming¹, YANG Guo-qing²

(1. College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China;
2. College of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China)

Abstract: Aiming at 895 nm VCSEL laser of Vxar company, a voltage controlled constant current source circuit with simple circuit structure and high stability is proposed. This circuit uses an ingenious constant current source circuit in parallel with a common voltage controlled micro current source circuit, which enables low cost, small volume and low power consumption on the basis of ensuring high stability and certain accuracy. Experimental results show that the stability of constant current source is better than 10^{-6} A(Max-Ipp is 0.35 μ A), the current is continuously adjustable by step, the circuit area is 4.5 cm × 4.5 cm, the maximum power consumption is 468 mW, which can well meet the control requirements of small laser pumped atomic magnetometer for the laser.

Key words: high stability; VCSEL laser; constant current source; magnetometer

1 引 言

高精度的激光泵浦原子磁力仪是分析和测量磁 场的有效工具,学科交叉研究的开展使相关的弱磁 测量技术发展迅速,高精度磁测技术在地球物理勘 探、地质灾害预报、海陆矿藏勘测、环境监测和生物 医药等领域展现出巨大的潜力。同时不同的应用领 域对原子光泵磁力仪控制系统的功耗和体积提出了 不同的要求^[1-2]。

原子磁力仪系统的光源部分主要由半导体激 光器及相关控制器、光路元件组成。激光器在磁

作者简介:陈立杰(1993 -),男,硕士研究生,主要研究方向为原子磁力仪,激光器应用,智能仪器仪表等。E-mail:chenlijie@mails.ccnu.edu.cn 收稿日期:2018-12-25;修订日期:2019-01-17

力仪中非常重要,是光源部分的核心组件^[3]。在 激光器的应用过程中,需要激光器有较高的功率 稳定性以及激光的波长稳定性,驱动电流的稳定 和温度都会引起激光器的功率和波长变化。因此 设计能够稳定激光器工作温度与输出功率的驱动 电路非常必要^[4-6]。

虽然很多的高精度商用电流源(比如 Anglent 的 B2902A)都可以满足对激光器电流的控制精度 和稳定性要求,但是商用电流源通常价格昂贵,体积 和功耗都比较大,不适合集成到自主研发的磁力仪 当中。而目前提出的大部分电路的电流稳定度仅达 到 10⁻⁵ A 左右^[7-10]。

VCSEL 激光器的低阈值电流、稳定单波长工作、可高频调制等优点^[11],使其非常适合成为自激 式原子磁力仪的泵浦和检测光源。因此,本文把 VCSEL 895 nm 激光器作为设计对象,提出了一种结 构简单,可以集成到小型磁力仪中的高稳定性(优 于10⁻⁶ A)压控恒流源电路设计。

2 硬件电路设计

为达到对激光器电流的控制要求,我们使用了 一种巧妙的精密恒流源电路与一种常见的压控微电 流源电路相并联,共同实现在工作电流为1 mA 情 况下实现对输出电流的连续微调。这个电路结构使 得扫描信号只能从恒定电流处汲取电流,防止过充 的电流损坏激光器。

2.1 精密恒流源电路

如图1所示的恒流源电路,在放大电路中引入 电流串联负反馈,可以实现一种负载接地的电压 -电流的转换电路。

日• 相田臣加納宅山

Fig. 1 Precision constant-current source circuit

由虚短虚断,以及电路原理,可以列出以下三个

$$V_n = \frac{R_3}{R_3 + R_4} V_2 \tag{1}$$

$$\frac{V_i - V_n}{R_1} = \frac{V_n - V_3}{R_2}$$
(2)

$$I_{o} = \frac{V_{2} - V_{3}}{R}$$
(3)

取 $R_1 = R_2 = R_3 = R_4$,联立三个公式可以解得: $I_o = V_i/R$

放大器 A_1 是同相放大。放大器 A_2 是电压跟随, 所以 $V_3 与 V_a$ 的电压相同。从物理概念上看,该电路 同时引入了正负 FB。若负载减小,假设 V_3 暂时不 变,一方面 I_a 将增大,另一方面 V_2 增大,由于负反馈 导致 V_2 将减小,从而导致 I_a 减小。当 $R_1/R_2 = R_3/R_4$ 时, I_a 的增减量正好相互抵消。因而在电路参数 R_1 = R_2 , $R_3 = R_4$ 确定后,输出电流仅受控于输入电 压,输出电流 $I_a = V_i/R_a$ 。通过稳压源输入电压使得 输出电流稳定在工作电流 1 mA 附近。

2.2 压控微电流源电路

压控微电流源电路如图2所示。

图 2 压控微电流源电路

Fig. 2 Voltage controlled micro current source circuit

对输出电流进行微调,使得工作电流在 1 mA 附近能随着电压控制信号而变化。图中 $T_1 与 T_0$ 特性完全相同,基准电流:

$$I_R \approx \frac{V_{\text{control}} - V_{\text{BEO}}}{R} \tag{4}$$

其中, V_{control} 为控制电压; V_{BEO} 为 T_0 的基 – 射极电压。 如果 T_0 , T_1 的电流放大系数 $\beta \gg 1$,并且两个晶体管 是相同的,那么通过两管的电流分别为:

$$I_R \approx I_{C0} = I_S \mathrm{e}^{V_{BE0}/V_T} \tag{5}$$

$$I_o \approx I_{c1} = I_s e^{V_{BE1}/V_T} \tag{6}$$

其中, V_{BE1} 为 T_1 的基 – 射极电压; V_T 为常数(温度的电压当量)。求解 B-E 之间的电压,同时由基准电流与偏置电流之间的关系可得:

公式:

推导可得:

$$I_o R_E = V_T \ln(\frac{I_R}{I_o}) \tag{8}$$

通过求解超越方程 $I_{CI} \approx \frac{V_{T}}{R_{e}} \ln \frac{I_{R}}{I_{CI}}$ 可求得 I_{CI} 。 在设计实际电路时,根据期望的 I_{R} 与 I_{CI} 值可以确 定 R 和 R_{e} 的取值。

2.3 稳压源选择

稳压源作为恒流源的基准,从源头决定了最终输出电流的指标。当我们让输入电压稳定在1V的时候,如果会因为输入电压不稳定等因素使得电流变化 0.0003 mA,则输入电压的变化至少是0.03 mV。所以为了让输出电流稳定,我们还需要一个精密的稳压源,其电压变化范围不超过0.03 mV。

我们选用的稳压源是 LM399。LM399 是一个 高精度基准源,6.95 V 并联基准,保证 0.5 ppm/℃ 温度系数,保证 1 Ω 最大动态阻抗,保证 20 µV RMS 最大噪声,保证 2 % 的初始容差,宽的工作电流范 围。高精度并联基准在很宽的电压、温度和工作电 流范围内拥有卓越的温度稳定性。一个稳定加热器 和有源齐纳二极管一起整合在一个单片式衬底上, 从而几乎消除了电压随温度而发生的变化。亚表面 齐纳二极管可在 0.5 mA 至 10 mA 的电流范围内运 作,并提供极低的噪声和出色的长期稳定性。上电 3 s 就可以进入±0.05 % 的误差之内,1 min 可以进 入±0.01 % 的误差之内,绝大多数 10 min 之内可以 进入 2 ppm 的误差范围内,30 min 内可进入 1 ppm 误差范围内。

3 实验结果与分析

3.1 LM399 电压基准的测试(长时间漂移以及噪声测试情况)。

使用万用表每隔10 s测量一次,连续测量2h, 并记录下测试数据。使用示波器连续测量LM399 输出电压2h,并计算出对应信号幅度和噪声的 比值。

由图 3、图 4、图 5 可知,LM399 的输出电压在长时间的情况很稳定,达到 10⁻⁶ V,且噪声为 9 ~ 14.2 mV。最低信噪比达到了 53.7 dB。

3.2 恒流源特性测试

3.2.1 稳定性(长时间漂移)

使用八位半万用表测试电流源在不同负载电阻 下的稳定性,测量时间为 10 min 左右,并采集数据。 由图 6、7、8 可以看到,在 0 k Ω ,1 k Ω ,1.75 k Ω ,2.7 k Ω ,5.3 k Ω ,8.6 k Ω 六种情况下,电流源输出的波 动分别为 0.325 μ A,0.15 μ A,0.1 μ A,0.2 μ A, 0.35 μA,0.35 μA,取其最大值 0.35 μA(优于10⁻⁶ A,满足高稳定使用条件^[12]),并以激光器手册 0.55 nm/mA的典型值来计算,电流波动对激光器波 长的影响最大为为 1.925 × 10⁻⁴ nm,以激光器手册 0.35 mW/mA的数值来计算,电流波动对激光器功 率影响最大为 0.1225 μW。

3.2.2 恒流源噪声测试

在恒流源输出端接1kΩ负载的情况下,使用示 波器测量负载两端电压并换算成电流噪声,由图9 可以看出,恒流源实际测试在长时间的情况很稳定, 噪声为优于5.25 μA。

Fig. 9 The constant current source noise tested by oscilloscope

 3.3 微电流测试(微电流源的线性度及扫描范围) 控制调控电压从0~10 V连续上调,由图10可知, 微电流源可以从1.00575 mA 扫描到1.02085 mA,范围 为15.1 μA,步进连续可调。并且微电流源的输出电 流与控制电压基本成正比例,通过通用计算方法δ= ΔY_{max}/Y×100% 可以出其计算线性度为δ=3.9%。

Fig. 10 Micro current source varies with control voltage

3.4 综合测试

如图 11 所示,搭建一个综合测试系统,控制激 光器发射激光经过原子气室,再将 PD 传感器接收 的信号放大后,使用示波器观察放大信号。在使用 商用 TEC 控制激光器温度不变的情况下,分别使用 商用电流源(Anglent 的 B2902A)和自主设计电流源 测试是否满足磁力仪要求。

综合测试分为两个步骤,步骤一为控制恒流源 在合适的区间进行线性扫描,由于激光和原子特性, 我们在示波器上可以观察到原子对激光的吸收谱图 像^[13-14],同时使用示波器采集数据。步骤二为改变 恒流源的电流大小,使吸收谱停留在半峰高的位置, 并固定电流不变,再用示波器采集吸收谱幅度数据。

图 11 综合测试系统框图

Fig. 11 Block diagram of comprehensive test system

由于两个吸收峰之间的线宽是由原子特性决定,所以线宽是恒定的 1.17 GHz(CS 原子吸收谱 线)^[15],再用测定出的固定电流吸收谱幅度与半峰 高度相比较,就可以的到对应恒流线宽。前文中我 们已经提到,温度不变的情况下,激光波长由电流决 定,从而可以用这个恒流线宽来衡量电流源的稳 定度。

图 12、图 13 和图 14 可以计算出使用商用恒流 源的恒流线宽为:

半峰线宽 = 1.17 GHz × $\frac{0.145}{0.290}$ = 585 MHz (9)

恒流线宽 = 585 MHz × $\frac{0.31447}{0.77980}$ = 235.9 MHz (10)

由图 15、图 16 和图 17 可以计算出使用自主设 计恒流源的恒流线宽为:

半峰线宽 = 1.17 GHz ×
$$\frac{0.0299}{0.0604}$$
 = 579.2 MHz
(11)

恒流线流 = 579.2 MHz ×
$$\frac{0.28186}{0.76028}$$
 = 214.7 MHz

将分别使用商用电流源和自主设计电流源测量的结果进行对比,恒流线宽分别为 235.9 MHz 和 214.7 MHz,商用与自主设计指标差别不大,满足设计要求。

图 16 商用温控 - DIY 恒流源(谱线宽度)

Fig.16 Commercial Temp control & DIY current control(spectral line width)

3.5 功耗测试

经过测试,电路正常工作时,正负电源电压电流 分别为 + 12 V(35 mA); - 12 V(4 mA),功耗为 468 mW。

4 结 论

本文针对 VCSEL 895 nm 激光器设计的压控恒 流源电路,结构简明,元器件均为常用元器件,工作 时电流连续可调,且与其他电路形式相比较具有较 高的稳定性,满足小型化原子激光自激式磁力仪的 实际需求,可以很好地实现对 VCSEL 895 nm 激光 器的波长控制。需要说明的是,在使用的过程中,本 文电路需要配合温度控制电路(如 MAX1978 搭建 的温控电路)一起对激光器进行控制,两者相互独 立,不影响本文电路的性能。本文中的压控恒流源 电路,已实际应用于一款小型化激光泵浦原子磁力 仪中,并可应用于绝大部分 VCSEL 系列的激光器电 流控制。

参考文献:

- [1] WANG Weidong, YANG Guoqing, LIANG Shangqing, et al. Study on design of low power control system for atomic magnetometer [J]. Aerospace Shanghai, 2017, 34(2): 47-51. (in Chinese)
 王维东,杨国卿,梁尚清,等. 原子磁力仪低功耗控制
- [2] ZHANG Bin. Research on the compact optically pumped Cs atomic magnetometer[D]. Hangzhou: Zhejiang University, 2015:1-9. (in Chinese) 张斌. 小型化铯光泵原子磁力仪研究[D]. 杭州:浙江 大学, 2015:1-9.

系统设计研究[J]. 上海航天, 2017, 34(2): 47-51.

[3] LI Shuguang. Investigation on the atomic magnetometer
 [D]. Hangzhou; Zhejiang University, 2009; 33 - 45. (in Chinese)

李曙光. 原子磁力仪的研究[D]. 杭州:浙江大学, 2009:33-45.

- [4] LIU Yu, DUANSilong. A digital controlled laser power supply system [J]. Laser & Infrared, 2009, 39 (10): 1064 1067. (in Chinese)
 刘玉,段士龙. 一种全数字控制的工业激光器驱动电源[J].激光与红外,2009,39(10):1064 1067.
- [5] LUO Liang, HUJiachen, WANG Canyuan, et al. Design of high-precision driving power and temperature control circuit for semiconductor laser[J]. Laser Technology, 2017, 41(2):200-204. (in Chinese)
 罗亮, 胡佳成, 王婵媛, 等. 高精度半导体激光器驱动 电源及温控电路设计[J].激光技术, 2017, 41(2): 200-204.
- [6] HUANG Fei, ZHOU Zheng, GUO Hanming. Design of driver circuit for semiconductor laser based on STM32
 [J]. Electronic Measurement Technology, 2018, 41 (1): 7-11. (in Chinese)

黄斐,周郑,郭汉明. 基于 ST - 32 的半导体激光器驱动电路设计[J]. 电子测量技术,2018,41(1):7-11.

- [7] SHAN Jiangdong, TIAN Xiaojian, ZHANG shuang, et al. Research on the system constitution and applying practice of LD controller[J]. Chinese Journal of Scientific Instrument, 2006, 27(6):1830-1832. (in Chinese) 单江东,田小建,张爽,等. LD 控制器的系统组成与应 用研究[J]. 仪器仪表学报,2006,27(6):1830-1832.
- [8] ZHANG Xiongxing, FAN Yuan. Research and design of medium power laser driver circuit [J]. Foreign Electronic Measurement Technology, 2017, 36(2):59 - 62. (in Chi-

nese)

张雄星,范源.中功率激光器驱动电路的研究与设计 [J].国外电子测量技术,2017,36(2):59-62.

[9] QIU Xuanbing, LI Ning, SUN Dongyuan, et al. Research on driving circuit for miniaturized high stable semiconductor laser[J]. Laser & Infrared, 2018, 48(4):469-475. (in Chinese)
邱选兵,李宁,孙冬远,等. 小型化高稳定半导体激光 驱动电路研究[L] 激光与红体 2018 48(4).

驱动电路研究[J]. 激光与红外, 2018, 48 (4): 469-475.

- [10] MEI Jianchun, YE Qing, TIAN Jianguo. Design of driving circuit of multi-channel semiconductor laser [J]. Laser Technology, 2018, 42(2):245 248. (in Chinese) 梅剑春,叶青,田建国. 多路半导体激光器驱动电路设计[J].激光技术,2018,42(2):245 248.
- [11] WANG Lijun, NING Yongqiang, QIN Li, et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1):1-19. (in Chinese)
 王立军, 宁永强, 秦莉,等. 大功率半导体激光器研究 进展[J]. 发光学报, 2015, 36(1):1-19.
- [12] ZHANG Guoxiong, HUANG Chunhui. Continously adjustable semiconducter laser diode driver with high stability[J]. La-

ser & Infrared,2011,41(2):160-163.(in Chinese) 张国雄,黄春晖.—种高稳定连续可调半导体激光器 驱动源[J].激光与红外,2011,41(2):160-163.

- [13] YANG Shiyu, MIAO Peixian, LIAN Jiqin, et al. Development on the magnetometer with high sensitivity based on rubidium atoms [J]. Nuclear Electronics & Detection Technology, 2017, 37(2):198-201. (in Chinese) 杨世宇,缪培贤,廉吉庆,等. 高灵敏度铷原子磁力仪 研制 [J]. 核 电子学与 探测技术, 2017, 37(2): 198-201.
- [14] ZHANG Xiaonan, WEI Zongkang, LU Xiangdong, et al. Signal contrast research and analysis for atomic interference magnetometer [J]. Journal of Harbin Institute of Technology, 2018, 50(9):136-140. (in Chinese) 张笑楠,魏宗康,卢向东,等. 原子干涉磁力仪信号对 比度研究与分析[J]. 哈尔滨工业大学学报, 2018, 50 (9):136-140.
- [15] HU Yao. Research on the self-oscillating laser pumped Cs atomic magnetometer [D]. Hangzhou: Zhejiang University, 2018:8 17. (in Chinese)
 胡瑶. 自激式激光泵浦铯原子磁力仪的研究[D]. 杭州:浙江大学, 2018:8 17.