文章编号:1001-5078(2021)06-0760-06

· 激光器技术 ·

基于楔形微透镜补偿半导体激光阵列指向偏差

孟 娇,曹银花,秦文斌,刘友强,李 景,郭照师,兰 天,关娇阳,潘建宇,王智勇 (北京工业大学材料与制造学部先进半导体光电技术研究所,北京100124)

摘 要:针对半导体激光阵列的发光单元指向性偏差导致快轴光束质量显著劣化的现象,研究了 发光单元指向性偏差对快轴光束质量的影响,提出了一种利用微光学元件补偿发光单元指向性 偏差的方法,设计了一种楔形微透镜阵列,可实现单个 bar 条的光束耦合进芯径 200 μm、NA = 0.2 的光纤。模拟计算结果表明,楔形微透镜阵列的补偿作用可使半导体激光阵列快轴方向的 光参数积由 64.24 mm · mrad 下降到 58.14 mm · mrad,光纤耦合效率达到 95.6 %,相比补偿前 提高了 10.4 %。为降低工艺难度,采用分类补偿的方法,模拟光纤耦合效率达到 91.5 %。考虑 到工业应用,采用由三片楔形透镜组成的透镜组对分类后的发光单元光束分别进行补偿,测量得 到的光纤耦合效率为 90.4 %,比补偿光束指向性之前的耦合效率提高了约7%。 **关键词:**半导体激光阵列;发光单元指向性;楔形微透镜;光束质量

中图分类号:TN248.4 文献标识码:A DOI:10.3969/j.issn.1001-5078.2021.06.011

Compensation of directivity deviation of laser diode based on the wedge-shaped microlens-array

MENG Jiao, CAO Yin-hua, QIN Wen-bin, LIU You-qiang, LI Jing, GUO Zhao-shi,

LAN Tian, GUAN Jiao-yang, PAN Jian-yu, WANG Zhi-yong

(Institute of Advanced Technology on Semiconductor Optics & Electronics, Institute of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China)

Abstract: Aiming at the phenomenon that the beam quality of laser diode array could be deteriorated by the directivity deviation of emitters in the fast axis obviously, the influence of directivity deviation of emitters on beam quality in fast axis is studied. A method that the micro-optic allows for the compensation of directivity deviation is put forward and the wedge-shaped microlens-array is designed. As a result, the laser beams of a single bar are coupled into a standard fiber with 200 μ m core diameter and 0.2 numerical apertures (NA). The simulation results show that the beam parameters product of laser diode array is decreased from 64. 24 mm \cdot mrad to 58. 14 mm \cdot mrad in the fast axis, and the fiber coupling efficiency is up to 95. 6 %, which is improved by 10. 4 %. In order to reduce the process difficulty, the fiber coupling efficiency reaches 91. 5 % by using the classification compensation method. Considering the industrial application, the wedge lens group composed of three wedge-shaped lenses is applied to compensate the beam directivity of the classified emitters respectively. The measured optical fiber coupling efficiency is 90. 4 %, which is improved by 7 %. Keywords: laser diode array; directivity deviation; wedge-shaped microlens-array; beam quality

基金项目:国家自然科学基金项目(No. 51975017)资助。

作者简介:孟 娇(1995 -),女,硕士,研究方向为大功率半导体激光器的研究。E-mail:mengjiao2530@163.com 通讯作者:曹银花(1964 -),女,研究员,主要从事大功率半导体激光技术及工程化技术研究。E-mail:caoyh@bjut.edu.cn 收稿日期:2020-07-14;修订日期:2020-08-26

1 引 言

半导体激光阵列(Laser Diode Array, LDA)由多 个发光单元沿结平面紧密线性排列组成^[1]。LDA 发光单元的光束指向性偏差主要来源有两个:LDA 在封装过程中普遍存在的"Smile"效应导致各发光 单元的光束指向性不一致^[2];LDA 的光束发散角 大,在光束准直过程中,准直微透镜的安装误差造成 发光单元的光束指向性偏差^[3](指向性偏差的大小 称为指向角)。通常用光参数积(Beam Parameters Product, BPP) 来评价半导体激光器的光束质量, BPP 是光束的光斑宽度 d_0 和发散角 θ 的乘积^[4]。 LDA 的光束指向角增大光束的光斑宽度和发散角, 必然导致 BPP 的数值增大,显著劣化快轴光束质 量^[5-6]。LDA 具有电光转换效率高、寿命长、可靠 性高等优点[7-10],但光束质量较差成为限制其发展 应用的重要因素^[11]。因此,在实际应用中,需要通 过技术手段改善光束质量以满足使用要求。2016 年,Fabio 等人^[12]利用全自动设备安装 FAC 使其精 确对准发光单元,实现快慢轴两个方向上的指向误 差小于 0.1 mrad。2018 年, Gabriel 等人^[12] 针对 LDA 的"Smile"效应提出了利用光束变换系统和包 含19个凹凸柱透镜的望远镜阵列补偿指向角的方 法,通过调整凹面顶点的偏心位置补偿光束指向性, 光纤耦合效率为 85.4 %,提高了 22.8 %。

本文重点研究 LDA 发光单元的光束指向性偏 差对光束质量的影响,通过楔形微透镜阵列来补 偿发光单元的光束指向性偏差。为了降低加工难 度和成本,利用分类补偿的方法,改善 LDA 的快轴 光束质量,将单 bar 光束耦合进芯径 200 µm、NA = 0.2 光纤。

2 指向角的测量

本文选用的 LDA 是包含 19 个发光单元的 cmbar,发光单元间距为 500 μm。由于 LDA 的光束是 像散光束,快慢轴方向的发散角不一致,需分别用快 轴准直镜(Fast axis collimator, FAC)和慢轴准直镜 (Slow axis collimator, SAC)对光束进行准直^[13-14]。

LDA 在快慢轴方向的光束质量相差悬殊,如图 1 所示,通常先用 FAC 压缩快轴发散角,然后再经过 光束转换透镜(Beam Transformation System, BTS)将 光束旋转 90°,转换快慢轴光场分布空间位置^[15], SAC 就可以用一个柱面镜替代微透镜阵列准直慢 轴光束,能够提高准直效果,均衡快慢轴的光束 质量。

"Smile"效应使得发光单元在 X 方向上存在微

米级的位移^[16],导致光束经过 FAC 后在 *X-Z* 面引 入发光单元的光束指向性偏差,如图 2 所示。此外, FAC 的安装误差增大了光束指向性偏差,BTS 旋转 光束后,光束指向性分布在 *Y-Z* 平面上。光束指向 性偏差会对光斑宽度和发散角产生影响,必然显著 影响快轴光束质量,但对慢轴方向基本无影响^[17]。

Fig. 1 Structure of LDA module

图 2 X-Z 和 Y-Z 平面上的光束指向角

Fig. 2 The beam directivity deviation in X-Z and Y-Z plane 本文设计了测量各个发光单元的光束指向角的 光学系统,实验装置由 LDA、狭缝板和 CCD 组成,如 图 3 所示。通过移动狭缝板位置逐个测量 LDA 发 光单元的光束指向,利用 CCD 依次捕获 19 个发光 单元光束的光斑中心。

图 3 光束指向角的实验装置图

Fig. 3 Experimental setup diagram of directivity deviation 如图 4 所示,以第一个发光单元的光束指向为基 得到 LDA 的光束指向分布图 下槽坐标表示发

准,得到 LDA 的光束指向分布图。下横坐标表示发 光单元的初始位置,上横坐标表示发光单元的测量位 置,纵坐标为传输距离,19 条不同颜色的线代表 19 个 发光单元的光束指向。测量和计算结果表明,第 2 ~ 13 个发光单元的光束指向角在 0 ~ 0.6 mrad,第 14 ~

(8)

19个发光单元光束的指向角为1~2 mrad。

3 楔形微透镜阵列的设计

为了补偿 LDA 发光单元的光束指向角,根据光 束指向角测量数据设计了楔形微透镜阵列(Wedgeshaped Microlens-Array,WMA)。楔形微透镜补偿光 束的原理如图 5 所示。

Fig. 5 Schematic of wedge prism

ABED 为楔形微透镜, 折射率为 $n, \alpha \in ABED$ 镜片的其中一个底角, $\beta \in \angle BED$ 的补角, 光束经过 镜片发生两次折射, 当 $\alpha = \beta$ 时, 出射光平行于入射 光, 如图中黑线所示, θ_0 是水平入射光线的入射角, 其几何关系有:

$$\theta_0 = 90^\circ - \alpha \tag{1}$$

如图中灰线所示,LDA 发光单元的光束存在指 向角 δ,β 的角度随着指向角变化,实现补偿光束指 向角的作用。根据折射定律和几何关系有:

$$\sin\theta_1 = n\sin\theta_2 \tag{2}$$

$$n\sin\theta_3 = \sin\theta_4 \tag{3}$$

$$\theta_1 = \theta_0 + \delta \tag{4}$$

$$\theta_2 = \theta_3 + \gamma \tag{5}$$

$$\theta_4 = 90^\circ - \beta \tag{6}$$

其中, θ_1 、 θ_2 分别是棱镜入射面的入射角与折射角; θ_3 、 θ_4 分别是棱镜出射面的入射角与折射角; γ 为楔 形微透镜的补偿角,且有 $\gamma = \beta - \alpha$,随着光束指向 角而变化。将公式(1)、(4)、(5)代入(2)中:

$$\cos(\alpha - \delta) = n\sin(\theta_3 + \gamma)$$
(7)
根据公式(3)(6)有:

$$n\sin\theta_3 = \cos(\alpha + \gamma)$$

其中, $\alpha = 61^{\circ}48'$,n = 1.57。若已知发光单元的光束 指向角 δ ,由公式(7)、(8)联立就可以获得 19 个楔 形微透镜的补偿角 γ ,如表 1 所示。

表1 19个楔形微透镜的补偿角

Tab. 1 The corrected angle of 19 wedge prism

序号	δ∕mrad	γ /mrad
1	0	0
2	0. 544	0. 716
3	0. 635	0. 809
4	0. 648	0. 821
5	0. 688	0. 859
6	0. 682	0. 856
7	0. 637	0. 813
8	0. 413	0. 588
9	0. 335	0. 509
10	0. 371	0. 546
11	0. 534	0. 711
12	0. 551	0. 725
13	0. 618	0. 793
14	1.07	1. 246
15	1. 273	1. 447
16	1. 574	1. 748
17	1. 939	2. 114
18	2. 258	2. 435
19	2. 181	2.356

如图 6 所示,根据楔形微透镜补偿角的数据设 计相应的 WMA。19 个楔形微透镜沿发光单元排列 方向依次叠加,分别与相对应的发光单元相匹配,光 束透过 WMA 时发生不同程度的偏折以补偿发光单 元的光束指向角。

Fig. 6 Optical path diagram of WMA compensates directivity 从表 1 数据可以看出,LDA 的"Smile"效应导致

光束指向角呈连续变化趋势,而且考虑到 WMA 在 实际应用中的加工难度和成本,我们可以采用分类 补偿的方法将具有相近指向角的发光单元分为一 类,用同一补偿角的楔形微透镜补偿,表2是光束指 向角分类情况。

表2 发光单元光束指向角的分类情况

Tab. 2 Classification of beam directional

angle	e of	emitters	
-------	------	----------	--

		-			
emitters	1~2	3 ~ 7	8 ~ 13	14 ~ 16	17 ~ 19
γ /mrad	0	0.8	0	1.4	2.2

光束指向角在 0.6 mrad 以下的发光单元无需补 偿,如第 1~2、8~13 个发光单元的光束不作补偿;第 3~7、14~16、17~19 个发光单元的光束分别用补偿 角为 0.8 mrad、1.4 mrad、和 2.2 mrad 的楔形微透镜 补偿。图 7 是分类楔形微透镜补偿发光单元光束指 向角的光路图。由图中可以看出,经过 WMA 补偿之 后,所有发光单元的光束指向一致性明显改善。

图 7 WMA 分类补偿光束指向的光路图

Fig. 7 Optical path diagram of WMA compensates directivity

4 光纤耦合系统的设计与实验

本文将单 bar 光束耦合进芯径 200 μm、NA = 0.2 的光纤中,利用 ZEMAX 软件建立了 LDA 的光 纤耦合系统模型。如图 8 所示,光束依次经过 FAC、 BTS、WMA 和 SAC 后,利用 25 mm 聚焦镜将光束耦 合进光纤并获得聚焦光斑。

Fig. 8 The fiber coupling system of LDA

通过测量焦点前后光斑宽度,利用曲线拟合的 方法可以获得激光束的发散角^[18-19],通过公式计算 得到 LDA 的光束质量和耦合效率。表 3 是 LDA 在不同情况下的模拟计算结果。

表3 模拟计算结果

Tab. 3 The simulation and calculation results

类型	d_0/mm	$\theta_{\rm fast}/{\rm mrad}$	BPP/(mm • mrad)	Efficiency/%
理想光源	0. 153	376	57. 53	98.7
实际光源	0. 166	387	64.24	85.2
WMA 补偿	0. 158	368	58.14	95.6
WM 补偿	0. 162	373	60. 38	91.5

对于理想的LDA,经过聚焦镜后束腰直径为153 µm, 快轴发散角为376 mrad,BPP为57.53 mm · mrad,光纤 耦合效率为98.7%。按照芯径200 µm、NA = 0.2 的光纤入射条件,光纤的 BPP为80 mm · mrad,但 表3中的光斑宽度数据均以CCD中86.5%环围能 量为标准选取,计算得到的 BPP也是86.5%环围 能量下的 BPP,由于 BPP与光纤入射条件的计算方 法不一致,耦合效率达不到100%。

在 LDA 的光纤耦合系统模型中引入表 1 中测量的光束指向角,得到实际 LDA 的聚焦光斑如图 9(a)所示,束腰直径为 166 μm,曲线拟合结果如图 9(b)所示,快轴发散角为 387 mrad,最终得到 BPP 为 64.24 mm · mrad,光纤耦合效率为 85.2%。由分析可知,LDA 发光单元的光束指向角使 BPP 的数值增大了 11.7%,光纤耦合效率降低了 13.5%。因此,发光单元的光束指向角会明显劣化 LDA 的快轴光束质量,降低光纤耦合效率。

图 9 头际 LDA 元源的模拟焦斑和曲线拟合图 Fig. 9 Simulated focal spot and curve fitting diagram of actual LDA

将表1中WMA的补偿角数据带入模型中,利用 补偿实际光源的光束指向角后,聚焦光斑如图10(a) 所示,束腰直径为158 μm,拟合曲线如图10(b)所示, 快轴发散角为368 mrad,BPP为58.14 mm · mrad,光 纤耦合效率为95.6%。与不经过WMA的实际光 源相比,BPP的数值减小了9.5%,光纤耦合效率提 高了10.4%,LDA的快轴光束质量和光纤耦合效 率得到了显著的提高。

按照表 2 中的分类方法,利用 WM 分类补偿 LDA 发光单元的光束指向角,聚焦光斑如图 11(a)所 示,束腰直径为 162 μm,拟合曲线如图 11(b)所示,快 轴发散角为 373 mrad, BPP 为 60.38 mm · mrad,光纤 耦合效率为 91.5%。WM 分类补偿光束指向角也 可以显著提高 LDA 的快轴光束质量和光纤耦合效 率,并且 WM 的设计大大降低了制造工艺的难度, 在工业应用中具有可实施性。

为了降低楔形微透镜的工艺难度,依据 WM 分 类补偿光束指向性偏差的思想,利用三片楔形透镜 组成的楔形透镜组补偿光束指向性,搭建了半导体 激光阵列的光纤耦合系统。快轴方向的光斑宽度为 9.5 mm,由表1中光束指向角数据将所有发光单元 分为三组,分别包含第1~7个、第8~13个和第 14~19个发光单元。如图12(a)所示,第I、II、II 个楔形透镜片的宽度分别为3.5 mm、3 mm和3 mm,且补偿角分别为0.8 mrad、0 mrad和2 mrad,分 别补偿三组发光单元的光束指向角。实验装置如图 12(b)所示,将三片楔形透镜用紫外胶胶固并放置 在机械工装里,楔形透镜组将补偿 bar 条发光单元 的光束指向性。

利用 CCD 观测 bar 条在经过楔形透镜组的光 斑图像。如图 13(a) 是补偿光束指向性前的光斑 图,图中发光单元的光强分布不均匀,右侧光斑亮度 较强。图 13(b) 是补偿光束指向性后的光斑图,光

强分布较为均匀,中间亮度较强。

(c)补偿前焦斑图
 (d)补偿后焦斑图
 图 13 楔形透镜组补偿前后的光斑图
 Fig. 13 The spot diagram before and after compensation of the wedge lens group

Bar 条光束经过 25 mm 聚焦镜后,在 CCD 上的 焦点光斑如图 13(c)所示,右侧亮度较为集中,与图 13(a)相符合。将其耦合进芯径 200 μm、NA = 0.2 的光纤中,得到光纤耦合效率仅为 83.6%。由楔形 透镜组补偿光束指向性的光斑经过聚焦镜后,得到 的焦点光斑如图 13(d)所示,得到一个较为圆滑的 长椭圆形焦斑,快轴方向的光斑直径为 164 μm,快 轴发散角为 376 mrad, BPP 为 61.67 mm · mrad。将 补偿光束指向性后的单 bar 光束耦合进芯径 200 μm、NA = 0.2 的光纤中,得到光纤耦合效率为 90.4 %,比补偿前的耦合效率提高了约7%。

5 结 论

本文通过测量半导体激光阵列的发光单元的光 束指向角,设计了一组楔形微透镜阵列以补偿光束 指向角,改善光束质量,将单 bar 光束耦合进芯径 200 µm、NA = 0.2 的光纤中,光纤耦合效率达到 95.6 %,提高了 10.4 %。考虑到该技术在实际应 用中的工艺难度和成本问题,采用 WM 分类补偿的 方法,光纤耦合效率能够达到 91.5 %。为了进一步 降低实验过程中的工艺难度,采用由三片楔形透镜 组成的透镜组对发光单元光束进行分类补偿,测量 得到的光纤耦合效率为90.4%,比补偿光束指向性 之前的耦合效率提高了约7%。

参考文献:

- [1] Lianghui C, Guowen Y, Yuxian L. Development of Semiconductor Lasers[J]. Chinese Journal of Lasers, 2020,47
 (5):13-31. (in chinese)
 陈良惠,杨国文,刘育衔.半导体激光器研究进展[J].
 中国激光, 2020, 47(5):13-31.
- G Pelegrina-Bonilla, T Mitra. Increased coupling efficiency of fiber coupled modules by smile compensation [C].SPIE, 2019, 10900:109000U.
- [3] Fei P, Shun Y, Guannan J, et al. "Smile" Effect on Fast Axis Collimator Assembly for Diode laser Array[J]. Semiconductor Optoelectrictronics. 2014, 35(1):35 - 38. (in chinese)
 潘飞,尧舜,贾冠男,等. 半导体激光阵列"Smile"效应

下快轴准直镜的装调[J]. 半导体光电,2014,35(1): 35-38.

- [4] Zhouping S, Qihong L, Jingxing D, et al. Beam quality improvement of laser diode array by using off-axis external cavity[J]. Optics Express, 2007, 15(19):11776-11780.
- [5] Peng Hangyu, Li Xin, Wang Biao. Study on fiber coupled laser diode source based on mini-bar[J]. Laser Journal, 2015,36(8):14-17. (in Chinese) 彭航宇,李鑫,王彪. 基于 Mini-Bar 的半导体激光光纤 耦合研究[J]. 激光杂志,2015,36(8):14-17.
- [6] Huaxin G, Xin G, Xiaolei Z, et al. Fiber coupling of kilowatt level high power laser based on mini-bars[J]. Journal of Changchun University of Science and Technology, 2018,41(2):11-15.(in Chinese) 顾华欣,高欣,张晓磊,等. 基于 Mini-bar 的千瓦级大功率激光器光纤耦合[J]. 长春理工大学学报:自然科学

版,2018,41(2):11-15.

- Yan Y, Zheng Y, Duan J. Influence of positioning errors on the coupling efficiency of a single emitter laser array
 [J]. Optik, 2020, 204:163949.
- [8] Liu X, He H, Song Y, et al. 500 kHz level high energy double-pass Nd:YVO₄ picosecond amplifier with optic-optic efficiency of 51 % [J]. Applied Sciences, 2019, 9 (2):219.
- [9] Pietrzak A, Zorn M, Huelsewede R, et al. Development of highly-efficient laser diodes emitting around 1060nm for medical and industrial applications [C]//High-Power Diode Laser Technology XVII,2019.
- Liao Mingxing, Wang Xiang, Jian Weiming. Beam collimation of laser diode based on double-focus micro-lens [J].
 Laser & Infrared, 2016, 46(3):294 299. (in Chinese)

廖明星,王翔,简伟明.基于双焦距微透镜的半导体激光 束准直的研究[J].激光与红外,2016,46(3):294-299.

- [11] Ferrario F, Fritsche H, Grohe A, et al. Building block diode laser concept for high brightness laser output in the kW range and its applications[C]. High-Power Diode Laser Technol. Appl. XIV, 2016, 9733 :97330G.
- [12] Gabriel P B, Thomas M. Compensation of the laser diode smile by the use of micro-optics [J]. Applied Optics, 2018,57(13):3329-3333.
- [13] Lu Hongyu. The research on laser power synthesis technology based on semiconductor laser[D]. Hangzhou:Hangzhou Dianzi University,2018. (in Chinese) 陆鸿宇. 基于半导体激光器的激光功率合成技术[D]. 杭州:杭州电子科技大学,2018.
- [14] Yu He. High power semiconductor laser shaping and design of fiber coupling system [D]. Chuangchun; Changchun University of Science and Technology, 2019. (in Chinese)

于贺.高功率半导体激光整形及光纤耦合系统设计 [D].长春:长春理工大学,2019.

- [15] Chen Zikang. Research and simulation of high beam quality semiconductor laser bar spectral beam combining system[D]. Wuhan; Huazhong University of Science & Technology, 2019. (in Chinese) 陈子康. 高光束质量半导体激光巴条光谱合束系统研 究及仿真[D]. 武汉:华中科技大学, 2019.
- [16] Jia Guannan. Research on key technologies of high power diode laser array packaging[D]. Beijing: Beijing University of Tecnology, 2017. (in Chinese)
 贾冠男. 大功率半导体激光阵列芯片封装关键技术研究[D]. 北京:北京工业大学, 2017.
- [17] Zhi L, Shun Y, Xiangyu G, et al. Calculation for the fast axis beam quality of the laser diode stack [J]. Infrared and Laser Engineering, 2015, 44(1):85 90. (in Chinese)
 李峙, 尧舜, 高祥宇, 等. 半导体激光器堆栈快轴光束 质量计算的研究[J]. 红外与激光工程, 2015, 44(1):85-90.
- [18] Li Yao, He Hengxiang, Wan Yong. Evaluation and improvement of beam quality of supercontinuum laser[J]. Laser & Infrared, 2018, 48(4): 476 479. (in Chinese) 李瑶,何衡湘,万勇. 超连续谱激光光束质量评价及提升方法[J]. 激光与红外, 2018, 48(4): 476 479.
- [19] Yan Hongyu. Evaluation of beam characteristics of high power semiconductor laser[D]. Chuangchun: Changchun University of Science and Technology, 2019. (in Chinese) 闫宏宇. 高功率半导体激光器的光束特性评价[D]. 长 春:长春理工大学, 2019.