文章编号:1001-5078(2021)08-1057-08

·光纤传感及光通讯技术 ·

超短 FBG 的高灵敏度温度传感器

吴 昊^{1,2},张 洋³,王 帅⁴,刘瀚霖^{1,2},辛璟焘^{1,2}

 (1. 北京信息科技大学 光电测试技术及仪器教育部重点实验室,北京 100192;2. 北京信息科技大学 光纤传感与系统北京实验室, 北京 100016;3. 中国建筑材料科学研究总院有限公司 绿色建筑材料国家重点实验室,北京 100024;
 4. 合肥工业大学仪器科学与光电工程学院,安徽 合肥 230009)

摘 要:为了研究一种适用于人造卫星环境温度监测的高灵敏度温度传感器,利用超短光纤光栅的小尺寸优点并结合双金属增敏结构研究设计小尺寸高灵敏度温度传感器。采用1 mm 超短光纤光栅作为测量敏感元件,以热膨胀系数大的铝材作为基底、热膨胀系数小的殷钢为热应变传递梁,将30 mm 的铝材基底热应变转化为1 mm 超短光纤光栅上的弹性应变,达到高效的温度增敏效果,实现了高灵敏度的温度测量。经测试,高灵敏度温度传感器的温度灵敏度系数为292.59 pm/℃,分辨率优于0.004 ℃,线性度为99.93 %。该传感器可用于温度的精确测量,具有尺寸小和分辨率高等优点。

关键词:超短光纤光栅;温度传感;增敏结构

中图分类号:TN253 文献标识码:A DOI:10.3969/j.issn.1001-5078.2021.08.014

High sensitivity temperature sensor of ultra-short FBG

WU Hao^{1,2}, ZHANG Yang³, WANG Shuai⁴, LIU Han-lin^{1,2}, XIN Jing-tao^{1,2}

 Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China;
 Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China;
 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China;

4. Instrument, Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: To study a high-sensitivity temperature sensor suitable for artificial satellite fiber grating, the ultra-short fiber grating is used in the small size and high sensitivity temperature sensor with the bimetal sensitizing structure. The 1mm ultra-short fiber grating is used as the measurement sensitive element, the aluminum with a large thermal expansion coefficient is used as the substrate, and the invar with a small thermal expansion coefficient is used as the thermal strain of the 30 mm aluminum substrate is converted into the 1mm ultra-short fiber grating. Elastic strain achieves a high-efficiency temperature sensitivation effect and realizes high-sensitivity temperature measurement. After testing, the temperature sensitivity coefficient of the high-sensitivity temperature sensor is 292. 59 pm/°C, the resolution is better than 0.004 °C, the linearity is 99. 93 %. The sensor can be used for accurate temperature measurement and has the advantages of small size and high resolution.

Keywords: ultra-short fiber grating; temperature sensing; sensitizing structure

基金项目:高等学校学科创新引智计划(先进光电子器件与系统学科创新引智基地)项目(No. D17021);国家自然科学基金重点项目(No. 51535002)资助。

作者简介:吴 吴(1995-),男,硕士研究生,主要从事光纤光栅传感方面的研究。E-mail:18435207113@163.com

通讯作者:辛璟焘(1980-),男,博士,副教授,主要从事光纤传感,光纤激光器方面的研究。E-mail:xinjingtao@bistu.edu.cn

收稿日期:2020-10-13

1 引 言

光纤布拉格光栅(FBG)传感器具有体积小、抗电磁干扰能力强、重量轻、信号传输距离远等诸多优点^[1-2],可用于应变、温度、位移、和加速度等物理量的测量^[3-6]。光纤光栅传感器在航空航天、道路桥梁、石油电力、安全监测等^[7-8]诸多领域具有重要的应用。

在国防、民用、军事等领域,人造地球卫星发挥 着重要的作用。由于地球轨道空间环境的复杂性, 卫星表面的温度影响着其运行和正常工作,对其表 面温度的测量和控制是一项重要的工作。对高性能 卫星表面温度的测量来说,其测量精度需达到 ±0.1℃,分辨率达到0.01℃。

传统的热敏型测温元件可以实现对卫星温度的 实时监测,但其抗电磁干扰能力差、耐辐射特性差, 因此限制了其在卫星上的长期稳定使用。基于光纤 光栅的新型高精度温度传感器是近些年来的研究热 点。光纤光栅因其具有抗电磁干扰能力强、体积小、 耐辐照等特点^[9],正在成为空间飞行器结构健康监 测^[10]的一个重要研究方向。提高传感器的解调精 度和传感器的灵敏度是提高温度测量精度和分辨率 的有效技术手段。因此,研究微型高精度、高灵敏度 系数的 FBG 温度传感器具有重要的研究价值。

目前,主要的光纤光栅温度传感器增敏方法主要 有表面镀覆法、粘合法和双金属增敏结构。镀覆法是 在光纤表面镀上一层热膨胀系数较大的镀覆层来提高 传感器的温度灵敏度系数。华东理工大学的齐一 华^[11]等人研究了Ag-Ni双金属镀层和Ti-Ag-Ni 三层金 属镀层对光纤布拉格光栅传感器高温传感特性,实验 得到Ag-Ni双金属镀层光纤布拉格光栅的温度灵敏度 系数为29.54 pm/℃,Ti-Ag-Ni 三层金属镀层光纤光栅 的温度灵敏度系数为30.32 pm/℃。南京邮电大学的 魏昊文^[12]等人使用硅橡胶、环氧树胶和 PDMS 胶分别 对FBG 进行有机涂覆,对三种涂覆光纤光栅在25 ℃~ 50 ℃的温度下进行实验研究,得到的温度灵敏度系数 分别为17 pm/℃,27 pm/℃和86 pm/℃。

粘合法是通过把光纤光栅粘贴或者封装在热膨 胀系数大的材料中实现温度增敏。西安石油大学的 禹大宽^[13]等人将 FBC 封装在铍青铜基底材料上, 制作的温度传感器在 20~200 ℃范围内温度灵敏度 系数为 31.5 pm/℃。詹亚歌^[14]等人设计了一种用 铝槽封装光纤光栅的结构,其温度灵敏度系数达到 了 39.8 pm/℃。姜明月^[15]等人设计了一种以不锈 钢管为基底封装材料的小尺寸光纤光栅温度传感器,对传感器在 - 20 ℃ ~ 50 ℃区间的温度进行测 试结果表明金属基底封装的光纤光栅温度传感器的 灵敏度达到 28.6 pm/℃。

为了进一步提高温度测量灵敏度,设计了双金属 增敏结构,其由两种热膨胀系数不同的金属构成,热 膨胀效应引起的基底的长度变化通过热膨胀系数小 的传递梁传递给 FBG,实现温度测量的增敏效果。李 阔^[16-17]等人设计了一种双金属光纤光栅温度传感 器,得到传感器的精度为±0.05 ℃,温度灵敏度系数 为520 pm/℃;为了实现高的增敏系数,他们将基底的 长度提高到 360 mm。马晓川^[18]等人制作了一种双 金属 温 度 传感 器,温 度 的灵 敏 度 系 数 达到 了 352.9 pm/℃,其传感器的尺寸较大,为245 mm。

本文通过理论分析了应变传递梁的长度变化、应 变传递梁的材料变化、基底的长度变化和基底的材料 变化对增敏结构光纤光栅温度传感器温度灵敏度系 数的影响,在此基础上设计了一种高灵敏度、小尺寸 的光纤光栅温度传感器。首先通过准分子激光器写 制了1mm超短光纤光栅,并将其作为敏感元件,然后 采用导热快、热膨胀系数大的铝材料作为基底和热膨 胀系数小的殷钢材料作为应变传递梁组成双金属结 构,完成了传感器的小型化封装;传感器整体长度为 30mm,宽度为6mm,高度为3mm。实验结果表明, 传感器灵敏度系数高达292.59pm/℃、分辨率优于 0.004℃、具有高精度、高重复性、高分辨率的特点。

2 传感器的设计

结构增敏光纤光栅温度传感器增敏的原理是利 用光纤光栅(FBG)对温度和应变同时灵敏的特性, 把 FBG 和高热膨胀系数的材料封装到一起,当温度 变化时,将高热膨胀系数材料的热形变转换为 FBG 的弹性应变,使得 FBG 波长变化量增加。本文使用 双金属结构,对 FBG 进行温度灵敏度增敏,增敏结 构如图 1 所示。

当温度发生变化时,基底与应变传递梁的长度 均发生变化。由于它们的热膨胀系数不同,它们的 长度变化量不同,它们的差值传递给了 FBG。当 FBG 的长度发生改变时,其布拉格波长会随之发生 变化。FBG 的应变量越大,布拉格波长漂移量也就 越大。因此,可以通过调整基底和应变传递梁的长 度以及选用不同材料组合的来控制 FBG 的应变量。

令 α_1 为基底的热膨胀系数, α_2 为应变传递梁的热膨胀系数, L_1 为基底材料金属上的两个固定点之间的长度, L_2 为传感光纤的长度。当温度变化 ΔT 时,基底部分长度变化量为 $\alpha_1 L_1 \Delta T$,应变传递梁长度变化量为 $\alpha_2 (L_1 - L_2) \Delta T$,增敏结构中,光纤长度的变化量为 $\Delta L = \alpha_1 L_1 \Delta T - \alpha_2 (L_1 - L_2) \Delta T$ 。采用两点式将 FBG 封装于应变传递梁上。当温度变化时,FBG 的波长变化由两部分组成,热效应导致的波长变化和由结构热膨胀导致的弹性应变引起的波长变化,可表示为:

$$\frac{\Delta\lambda_B}{\lambda_B} = (1 - P_e)\varepsilon + \xi_j \Delta T \tag{1}$$

其中,*P*。为光纤弹光系数;ξ_f为光纤热光系数,光纤 热膨胀引起的波长漂移综合入光纤光栅的应变。若 由于结构热膨胀引起的应变全部传递到光纤上,则 温度变化引起FBG的应变可以表示为:

$$\varepsilon = \frac{\alpha_1 L_1 \Delta T - \alpha_2 (L_1 - L_2) \Delta T}{L_2}$$
(2)

相应的光纤光栅温度灵敏度系数为:

$$k_T = \frac{\Delta \lambda_B}{\Delta T} \tag{3}$$

将式(1)、(2)代入式(3)中,可以得到,结构增 敏的温度灵敏度系数可表示为:

$$k_T = \left(\left((\alpha_1 - \alpha_2) \frac{L_1}{L_2} + \alpha_2 \right) (1 - P_e) + \xi_f \right) \lambda_B \quad (4)$$

由公式(4)可以看出,温度灵敏系数的大小与 基底长度、应变传递梁长度、基底的热膨胀系数和应 变传递梁的热膨胀系数的有关。为了更加直观的分 析温度增敏系数与基底长度、应变传递梁长度和热 膨胀系数的相互关系。设定如下几种材料进行数值 计算和绘制关系曲线。20 ℃时,铝的热膨胀系数为 23.9×10⁻⁶/℃,铜的热膨胀系数为17.5×10⁻⁶/℃, 铁的热膨胀系数为12.2×10⁻⁶/℃,殷钢的热膨胀 系数为1×10⁻⁶/℃,石英的热膨胀系数为0.55× 10⁻⁶/℃,玻璃的热膨胀系数为4×10⁻⁶/℃。 当基底选用热膨胀系数较大的材料,应变传递 梁选用热膨胀系数较低的材料时,温度灵敏度系数 与L₁/L₂的关系曲线如图2所示。

Fig. 2 Relationship between temperature sensitivity coefficient and L_1/L_2

当基底选用热膨胀系数较高的材料,应变传递 梁选用热膨胀系数较低的材料时,温度灵敏度与 L_1/L_2 的曲线关系如图 3(a)所示,图 3(a)中 B 部分 扩大图如图 3(b)所示。

根据式(4)及图 2 和图 3 进行,可以分析得到:
(1)如图 2 和图 3 所示,温度灵敏度的大小与
L₁/L₂ 为线性关系。

(2)如图 3 所示,当基底选用低热膨胀系数材 料、应变传递梁选用高热膨胀系数材料时,当温度 升高时,双金属结构对光纤光栅处于压缩状态,光 纤光栅本身处于膨胀拉伸状态。当 L₁/L₂ 的值较 小时,光纤光栅的膨胀处于主导地位,因此温度灵 敏度系数为正;当 L₁/L₂ 的值较大时,双金属结构 对光纤光栅处于压缩处于主导地位,因此温度灵 敏度系数为负;当两者相等时,此时设计的温度灵 敏度系数为0;对于双金属结构分别为殷钢/铝、殷 钢/铁、殷钢/铜、玻璃/铝结构时,当 L₁/L₂ = 1.42、 1.63、1.58、1.85 时,双金属结构的温度灵敏度系 数为0;温度灵敏度系数为零无法进行温度的测 量,但是这种结构可用于温度不敏感器件的封装, 如基于光纤光栅的波分复用元器件和光纤激光器 反射镜。

(3)如图2所示,当基底选用高热膨胀系数材料、应变传递梁选用低热膨胀系数材料时,当温度 升高时,双金属结构对光纤光栅处于拉伸状态,在 加上光纤光栅本身处于拉伸状态,可以加大温度 传感器的灵敏度系数。本文将选择高热膨胀系数 材料作为基底,低热膨胀系数材料作为应变传递 梁进行实验。

由图2可以看出所用基底与应变传递梁热膨胀 系数差值越大、L₁/L₂越大,温度灵敏度系数越大, 因此采用铝和殷钢组合。为平衡微型化、增敏系数, 选取L₁/L₂为15。

3 传感器的制作

超短光纤光栅(Ultra-short Fiber Bragg grating, US-FBG)作为光纤光栅的一种,其制备方法与普通 均匀光纤光栅类似,通过在相位掩模板之前放置可 调光阑并且通过调整光阑大小实现光纤光栅的长度 控制。

超短 FBG 的光栅栅区长度短,反射率会比较低。为了获得高反射率的超短光纤光栅,本实验将高掺锗的 OFS 光纤进行低温高压载氢增敏处理后,采用准分子激光和相位掩模板刻写超短光纤光栅。本实验中使用的超短光纤光栅光谱如图 4 所示。可以看出,光纤光栅的峰值反射率约为 40 %,3 dB 带

宽约为 1.3 nm,采用高斯函数切趾,实现了边模抑制比约为 25 dB。

本实验制作的微型高灵敏度 FBG 温度传感器 的结构及实物如图 5 所示。双金属结构的光纤光栅 温度传感器是通过增大光纤光栅随温度的应变变化 量来提高其温度灵敏度系数。实验采用 E-120 HP 环氧树脂粘合剂进行基底和应变传递梁的固定,以 及使用两点式封装将光纤光栅固定在应变传递梁 上。基底的长度为 30 mm,传感光纤的长度为 2 mm,光栅位于传感光纤的中心。理论计算的增敏 结构的温度灵敏度系数为 426.839 pm/℃。

sensor with high sensitivity and Physical picture

4 传感器的标定与测试

为了对比分析,在测试双金属结构时,实验中添 加了3个光纤光栅传感器的温度测试。分别为两个 表贴在殷钢、铝材料上的光纤光栅温度传感器(其 中心波长分别为1542 nm、1537 nm)和一根中心波 长为1533 nm 的裸光纤光栅。双金属增敏结构温度 传感器中光栅的中心波长为 1555 nm。将该四种光 纤光栅温度传感器放于 FLUKE 7381 深井台式恒温 槽中。将传感器与解调仪相连接,通过上位机将解 调仪获取的数据传输至电脑终端。实验装置如图 6 所示。

图 6 温度测试实验装置 Fig. 6 Experimental device for temperature measurement

实验中,在 20~40 ℃内,从 20 ℃开始,每隔 2℃设置一个间隔点,共计 11 个点。对四个温度传 感器进行温度灵敏度实验,实验采用恒温水浴法,进 行持续试验,每个间隔点,设置时长 20 min。每个温 度间隔点的波长值是对应的波长数据短时间内的平 均值,以此作为每个温度间隔点的稳定值。

为了研究微型高灵敏度 FBG 温度传感器的温 度传感长期稳定性和可靠性,在20~40℃内设置了 20℃、30℃和40℃三个间隔点,对微型高灵敏度 FBG 温度传感器进行了温度循环实验,实验采用了 恒温水浴法,进行持续试验,每个温度间隔点设置稳 定时长 20 min,共完成6次重复度温度测试。

5 实验结果与分析

通过水浴池调节温度在 20~40 ℃进行标定,通 过数据分析,裸光纤光栅温度 – 波长测试数据的线性 拟合结果为: y = 0.011145x + 1533.3,获得的裸光纤 光栅的灵敏度系数为 11.15 pm/℃,如图 7 所示;贴于 殷钢材料上的光纤光栅温度 – 波长测试数据线性拟 合结果为: y = 0.01665x + 1537.13341,如图 8 所示; 贴于铝材料上的光纤光栅温度 – 波长测试数据线性 拟合结果为: y = 0.04193x + 1542.6,图 9 所示;金属 结构增敏微型 FBG 温度传感器温度 – 波长数据的线 性拟合结果为: y = 0.29259x + 1546.40595,其温度 传感器的灵敏度系数为292.59 pm/℃,其实验数据的 线性 拟合如图 10 所示。与传感器 理论灵敏度 426.839 pm/℃,存在较大误差。经过分析其产生误 差的主要原因是传感光纤的有效程度是大于 2 mm 的理论值。造成这一点的原因有两点:(1)两个点胶 端点的距离大于传递梁豁口的长度;(2)环氧胶的杨 氏模量较小,应变传递效率小于100 %,因此传感光 纤的有效长度大于 2 mm,接近 3 mm。

metal structure sensitized FBG temperature sensor

由图7至图10可以看出:1.四个传感器线性 拟合均为线性关系;2.贴于铝材料表面、殷钢表面 材料以及裸FBG三个传感器的测量点在拟合曲线 的两侧分布,设计的微型高灵敏度FBG温度传感器 的测量点均在拟合曲线上。由于测试使用的解调仪 的精度为10 pm,因此当传感器温度灵敏度系数较 低的时,其测量值在拟合曲线附近的涨落明显。当 传感器温度灵敏度系数很高时,10 pm的涨落无法 在拟合曲线附近观察到。一方面说明微型高灵敏度 FBG温度传感器的传感精度高于其余三个温度传 感器;另一方面说明高增敏可以克服解调仪的解调 误差。

对增敏微型温度传感器进行的长期稳定性和可 靠性分析,实验获取的实验数据如图 11 所示,循环 试验进行了 8.7 h。

实验中微型高灵敏度 FBG 温度传感器在每个 温度固定间隔定点的波长值是对应的波长数据短 时间内的平均值,以此作为每个温度间隔点的稳 定值。以温度间隔点循环次数为横坐标,每次达 到间隔点对应的波长稳定值为纵坐标,测试数据 结果如图 11(a)所示。以相同温度下,求取每次循 环温度稳定后,对应温度间隔点的各波长稳定值 的平均值。再求各个稳定值与平均值对应的波长 差,以温度循环次数为横坐标,每次达到稳定点对 应的稳定值与平均值的差值为纵坐标作图,如图 11(b)所示。由图 11(b)可以看出,微型高灵敏度 FBG 温度传感器的重复偏差不超过±8 pm,该偏 差对温度测量的结果影响不超过0.06 ℃,测量分 辨率优于0.004 ℃,满足高精度测温要求,稳定性 和重复性良好。

由于受光纤光栅承受的应变量的限制,测温 传感器的量程为 20~40 ℃。实验的线性效果良 好,为提高温度传感器的灵敏度提供了一种良好 的方法。

6 结 论

本文经过理论分析双金属增敏结构的应变传 递梁和基底材料、长度的变化对温度灵敏度系数 的影响,获取了增敏结构所采用的材料及长度对 温度灵敏度关系,采用准分子激光器写制的1 mm 超短光纤光栅作为传感元件,制作了以热膨胀系 数高的铝材料为基底、热膨胀系数低的殷钢为应 变传递梁的微型高灵敏度温度传感器。通过理论 分析、数值计算,表明金属增敏结构能够有效提高 光纤光栅温度灵敏度。并对其进行了实验的标 定、重复度实验验证,实验结果表明:微型增敏温 度传感器的灵敏度系数为 292.59 pm/℃,实现了 在 20~40 ℃的测温。经过循环试验,可知微型增 敏温度传感器测量结果影响不超过 0.06 ℃,满足 高灵敏度、长期稳定性测温要求。微型高灵敏度 温度传感器具有体积小、抗电磁干扰能力强、耐辐 照、测量灵敏度系数高的特点,在高精度测温传感 领域具有重要的应用价值。

参考文献:

- [1] Han Xiaoxiao, Yuan Lin, Fan Linlin, et al. The influence of thermal expansion coefficient of FBG packaging material on temperature sensing accuracy [J]. Semiconductor Optoelectronics, 2019, 40(3):375 379. (in Chinese) 韩笑笑,员琳,樊琳琳,等. FBG 封装材料热膨胀系数 对温度传感精度的影响[J]. 半导体光电, 2019, 40 (3):375 379.
- [2] Wang Fu, Jiang Huai, Yi Xiaolong, et al. Sensitivity enhancement and encapsulation of fiber bragg grating temperature sensors [J]. Semiconductor Optoelectronics, 2020,41(1):73-76. (in Chinese)
 王甫,江淮,易小龙,等. 光纤光栅温度传感器增敏封 装特性研究[J]. 半导体光电,2020,41(1):73-76.
- [3] He Tao, Zhu Yao, Yang Tianhao, et al. Accuracy design of grating displacement sensor calibration device for high and low temperature environment[J]. Missiles and Space Vehicles, 2018, 359, 1-5. (in Chinese)
 何涛,朱跃,杨天豪,等. 高低温环境光栅线位移传感器校准装置精度设计[J]. 导弹与航天运载技术, 2018, 359, 1-5.
- [4] Jin Qiao, Wu Xiangyu, Wang Chuanke, et al. Fiber bragg grating acceleration sensor for detecting floor vibration caused by human walking[J]. Instrument Technique and Sensor, 2020, 450(7):11-16. (in Chinese) 金峤, 吴翔宇, 王传克, 等. 一种用于人致楼盖振动测试的光纤加速度传感器[J]. 仪表技术与传感器, 2020, 450(7):11-16.
- [5] Li Tao, Dai Yutang, Zhao Qiancheng. A new type of high sensitivity optical fiber temperature sensor with micro-structure [J]. Journal of Optoelectronics · Laser, 2014, (4):625-630. (in Chinese)

李涛,戴玉堂,赵前程. 一种新型微结构高灵敏度光纤 温度传感器[J]. 光电子・激光,2014,(4):625-630.

[6] Zhang Liang. Design and packaging technology of high

temperature strain FBG sensor[D]. Hangzhou: China Jiliang University, 2017. (in Chinese) 张亮. 高温应变 FBG 传感器的设计及封装技术[D].

杭州:中国计量大学,2017.

- [7] Shui Biao. Research on sensing technology of metallized package fiber grating[D]. Wuhan: Wuhan University of Technology,2012(in Chinese) 水彪. 金属化封装光纤光栅传感技术研究[D]. 武汉: 武汉理工大学,2012.
- [8] Xu Guoquan, Xiong Daiyu. Applications of fiber bragg grating sensing technology in engineering [J]. Chinese Optics, 2013, 6(3):306-317. (in Chinese) 徐国权,熊代余. 光纤光栅传感技术在工程中的应用 [J]. 中国光学, 2013, 6(3):306-317.
- [9] Li Kai. Research on airborne sensors and key technologies based on FBG[D]. Beijing: Beijing Information Science and Technology University, 2018. (in Chinese) 李凯. 基于 FBG 的机载传感器及关键技术研究[D]. 北京:北京信息科技大学, 2018.
- [10] Xue Jingfeng, Song Hao, Wang Wenjuan. Application of optical fiber grating in health monitoring for aircraft structure [J]. Aeronautical Manufacturing Technology, 2012, 418(22):45-49. (in Chinese) 薛景锋,宋昊,王文娟. 光纤光栅在航空结构健康监测 中的应用前景[J]. 航空制造技术, 2012, 418(22): 45-49.
- [11] Qi Yihua. Research on surface metallization of fiber bragg grating and high temperature sensing performance [D]. Shanghai:East China University of Science and Technology, 2013. (in Chinese)
 齐一华. 光纤布拉格光栅表面金属化及高温传感性能 研究[D].上海:华东理工大学,2013.
- [12] Cao Shuaishuai. Fiber bragg grating temperature sensor signal demodulation and design of automatic calibration system[D]. Ji'nan:Shan Dong University, 2012. (in Chinese)

曹帅帅.光纤光栅温度传感器信号解调及其自动标定 系统设计[D].济南:山东大学,2012.

[13] Yu Dakuan, Qiao Xueguang, Jia Zhenan, et al. Bonded fiber bragg grating temperature sensor [J]. Instrument Technique and Sensor,2006,(9):4-5.(in Chinese) 禹大宽,乔学光,贾振安,等.贴片封装的光纤 Bragg 光 栅温度传感器[J]. 仪表技术与传感器,2006,(9): 4-5.

[14] Zhan Yage, Cai Haiwen, Xiang Shiqing, et al. Study on high resolution fiber bragg grating temperature sensor[J]. Chinese Journal of Lasers, 2005, (1):83 - 86. (in Chinese)

詹亚歌,蔡海文,向世清,等.高分辨率光纤光栅温度传感器的研究[J].中国激光,2005,(1):83-86.

- [15] Jiang Mingyue. FBG temperature-enhancing sensor and its monitoring system software design[D]. Ji'nan: Shan Dong University, 2017. (in Chinese)
 姜明月. FBG 温度增敏传感器及其监测系统软件设计 [D]. 济南:山东大学, 2017.
- [16] Li Kuo, Zhou Zhenan, Liu Aichun. The application of fiber bragg grating sensor to high precision temperature measure measurement[J]. Progress in Geophysics, 2008, 90(4):

1322 - 1325. (in Chinese)

李阔,周振安,刘爱春.基于光纤光栅的高精度测温传 感器研究[J].地球物理学进展,2008,90(4): 1322-1325.

- [17] Li Kuo, Zhou Zhenan, Liu Aichun, et al. High-Sensitivity fiber bragg grating temperature sensor at high temperature [J]. ACTA OPTICA SINICA, 2009, 29(1):249 251. (in Chinese)
 李阔,周振安,刘爱春,等. 一种高温下高灵敏光纤光 栅温度传感器的制作方法[J]. 光学学报, 2009, 29 (1):249 251.
- [18] Ma Xiaochuan, Zhou Zhenan, Liu Aichun, et al. A high-sensitivity and stable fiber bragg grating temperature sensor[J]. Journal of Optoelectronics · Laser, 2013, 24(4):
 1245 1250. (in Chinese)
 马晓川,周振安,刘爰春,等. 高灵敏度稳定光纤光栅 温度传感器的研究[J]. 光电子 · 激光, 2013, 24(7):
 1245 1250.