文章编号:1001-5078(2023)06-0822-08

· 激光应用技术 ·

基于改进微分增强法的激光雷达云参数反演算法

王博业¹, 臧 磊¹, 李 想¹, 孟园园¹, 周 妹¹, 陈思成¹, 常建华^{1,2}
(1. 南京信息工程大学电子与信息工程学院, 江苏 南京 210044;
2. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044)

摘 要:微分法是激光雷达云参数反演的一类传统方法,本文在微分增强法的基础上,优化 一阶与二阶微分信号的拟合点数,平衡失真与噪声对检测结果的影响。以距离修正的回波 信号代替云峰与云边界函数中的原始回波信号,增强云区域与非云区域的对比。对于因低 层云存在而造成二次阈值过大的问题,通过扩大一次阈值的排除区间,有效减少对云层的 漏判情况。采用激光雷达数据进行的实验结果表明,与改进前的算法相比,云底高度的相 关系数由0.8930提高至0.9328,均方根误差由0.4924 km 降低至0.2991 km,云顶高度的 相关系数由0.8174提高至0.8598,均方根误差由0.7637 km 降低至0.5912 km,改进后的 算法具备更佳的反演结果。

关键词:激光雷达;大气光学;云层检测;微分增强法

中图分类号:P413;TN958.98 文献标识码:A DOI:10.3969/j.issn.1001-5078.2023.06.003

LiDAR cloud parameter inversion algorithm based on improved differential enhancement method

 WANG Bo-ye¹, ZANG Lei¹, LI Xiang¹, MENG Yuan-yuan¹, ZHOU Mei¹, CHEN Si-cheng¹, CHANG Jian-hua^{1,2} (1. School of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract: The differential method is a traditional method for LiDAR cloud parameter inversion. In this paper, based on the differential enhancement method, the numbers of fitting points of the first-order and second-order differential signals are optimized to balance the effects of distortion and noise on the detection results. The distance-corrected echo signal is used to replace the original echo signal in the cloud peak and cloud boundary functions to enhance the contrast between the cloud and non-cloud regions. For the problem of excessive secondary thresholds due to the presence of low-level clouds, the exclusion interval for primary thresholds is expanded to effectively reduce the missed detection of clouds. The experiment results using LiDAR data show that the correlation coefficient of cloud bottom height is improved from 0. 8930 to 0. 9328, and the root mean square error is reduced from 0. 4924 km to 0. 2991 km. The correlation coefficient of cloud top height is improved from 0. 8174 to 0. 8598, and the root mean square error is reduced from 0. 7637 km to 0. 5912 km, which proves that the improved algorithm has better inversion results.

Keywords:LiDAR; atmospheric optics; cloud detection; differential enhancement method

收稿日期:2022-06-27;修订日期:2022-08-19

基金项目:国家自然科学基金项目(No. 61875089;No. 62175114);江苏省高等学校大学生创新创业训练计划项目(No. 202110300055)资助。

通讯作者:常建华(1978-),男,博士,教授,博士生导师,主要从事激光雷达,全固态脉冲激光器等方面的研究。E-mail: jianhuachang@nuist.edu.cn

1 引 言

云是一种漂浮在空气中的可见聚合物^[1],对地 球辐射和人类生产生活有着极大的影响^[2]。因此, 研究云的时空分布具有重要的意义。云的探测手段 分为人工观测和仪器观测^[3],目前基于各类主被动 仪器的观测成为主流的云层探测方式,如红外辐射 计^[4-5]、毫米波云雷达^[6]、激光雷达^[7]等。其中,激 光雷达因其全天候、高精度探测的优势得到了广泛 应用^[8]。

云层的宏观参数有云底高度和云顶高度,利用 激光雷达反演云层参数的算法可分为消光系数反演 法^[9-10]、滑动窗口法^[11-12]、光子计数概率法^[13]、微 分法^[14-15]等。消光系数反演法通过计算气溶胶消 光系数^[16]进一步得到云层分布;滑动窗口法通过检 测窗口内回波信号特征判断云层的存在;光子计数 概率法通过提取单脉冲计数率高于检测阈值,并且 多次测量统计概率高于设定概率的空间点探测云 层;微分法根据回波信号的一阶或二阶微分提取云 层信息。

综上不难看出,如何将云层部分回波信号从原 信号中提取是激光雷达云参数反演算法的关键,由 于激光入射云层时产生的回波信号易受气溶胶、环 境噪声的影响,很难直接获得云层信息,基于此,本 文提出了改进的微分增强法,优化了一阶与二阶微 分回波信号的拟合点数,平衡过拟合造成的失真和 欠拟合无法有效抑制噪声的问题。利用距离修正信 号对云峰函数和云边界函数进行优化,增强云区域 与非云区域的对比,同时扩大一次阈值筛选的云层 区域,有效减少了原算法对云层的漏判情况。最后 对比改进前后的算法得出,改进后的算法可提高云 底与云顶高度反演的准确性。

2 方法与原理

2.1 激光雷达探测云层原理

当激光雷达进行大气探测时,激光雷达方程^[17] 可以写作:

$$P(r) = \frac{O(r) C E \beta(r) r^{-2} \exp[-2 \int_{0}^{r} \sigma(r') dr'] + P_{\rm b} + P_{\rm ap}(r)}{D(P(r))}$$
(1)

式中, *P*(*r*) 表示高度 *r* 处激光雷达的回波信号强度; *O*(*r*) 是几何重叠校正因子;*C* 为激光雷达的系统常数;*E* 为激光雷达的发射能量;*β*(*r*) 为所有类型的大 气散射而形成的后向散射系数; $\sigma(r)$ 为大气消光系数, $P_{\rm b}$ 为环境光噪声; $P_{\rm ap}(r)$ 表示激光束在激光雷达系统内部传输时引起的后脉冲噪声; D(P(r)) 是处理光子短暂饱和现象的延迟校正因子。

由于云的后向散射系数和消光系数均大于气溶 胶,若高度 $r_1 - r_2$ 处存在云层,则该范围的P(r)会 显著大于附近非云区域,具体表现为:由云底 C_{base} 至云峰 $C_{\text{peak}}, P(r)$ 快速上升至最大值;由云峰 C_{peak} 至云顶 $C_{\text{top}}, P(r)$ 快速下降至背景噪声水平。图1 (a)、(b)和(c)为出现一层云时,模拟的激光雷达回 波信号及其一阶和二阶微分信号。图1(a)中的突 起是回波信号产生了激增现象,此处可以看作一个 典型的云回波信号,其在一阶微分信号图1(b)上对 应于一组相邻的波峰和波谷,与微分值等于0的三 个交点(零点)从下往上可分别对应云底、云峰和云 顶。而在二阶微分信号图1(c)上,则可以看出云峰 对应于一个负极值,而云底和云顶附近则是两个正 极值,较准确的云底和云顶高度分别在两个正极值 临近的两个零点处。

2.2 激光雷达数据来源说明

本文的激光雷达实测数据来自美国俄克拉荷马 州(Oklahoma),拉蒙特(Lamont),南部大平原 (Southern Great Plains,SGP)站点提供的相关增值产 品,其中的云参数由多传感联合反演法^[18]得到,具 有较高的准确性。该产品由美国大气辐射量计划 (Atmospheric Radiation Measurement, ARM)的数据 中心免费提供,所使用的 ARM 主动测云设备对云 的时空分布、降水量、太阳辐射、温度、风速、湿度、温 度等气象因素进行测量。这些数据会被国家海洋和 大气管理局(NOAA)、全球能源和水循环实验 (GEWEX)采用,从而帮助建立各种气象模型,对全 球气候进行研究分析。

2.3 改进的微分增强法

为了提高微分增强法(DE)反演云参数的准确 性,本文提出了改进的微分增强法(IDE),主要包含 以下三个方面:

(1)确定合适的滑动窗口点数进行一阶和二阶 微分信号的拟合;

(2)优化云峰函数和云边界函数表达式;

(3)扩大一次阈值的排除区间。

算法流程图如图 2 所示,以 2020 年 6 月 20 日 SGP 站点,12:44:34 的激光雷达数据为例,具体步骤如下:

(1)回波信号的预处理。图 3(a)为该时刻激 光雷达的原始回波信号,由图可以看出该时刻在 A、 B 和 C 三个区域有云层信息,但图 3(a)中 B、C 区域 的原始回波信号由于 r² 的衰减效应,云回波信号增 幅下降,容易造成漏判。因此,常采用距离修正对原 始回波信号进行预处理,如图3(b)所示的距离修正 的回波信号,A、B和C三个区域的信号幅度,与附 近非云区域的信号更加具有可比性。

(2)微分信号的拟合。需要指出的是,距离修 正会放大高处的信号,这种放大效应会随着距离 增加更加明显。此外,因距离修正会放大噪声,远 端回波信号的微分也在正值和负值之间来回振 荡,幅值会出现和云层信号一样的起伏变化,如 图4(a)的一阶微分信号和图4(b)的二阶微分信 号所示,随着微分阶数的增加,微分信号的起伏更 加明显。

由于直接求微分信号会使噪声极大地影响检测 结果,Pal^[14]等人提出在求微分信号时,对数据进行 5~11个点的拟合,即利用 n 点的滑动窗口,将窗口 内的回归直线斜率作为该点的斜率值。拟合点数过 少,无法有效削弱噪声的影响,而拟合点数过多会使 信号失真。DE 提出对数据进行 11 点的拟合,但测 试发现直接对一阶微分信号使用11点的滑动窗口 拟合会使信号失真,微弱变化的云层无法被筛选出 来,出现的漏判情况较多。因此 IDE 首先对一阶微 分信号进行5点滑动窗口拟合,避免信号拟合过度 失真,二阶微分信号在拟合后的一阶微分信号基础 上继续进行11点的滑动窗口拟合,从而尽可能突出 云层区间,同时也有效规避了两次微分造成的噪声 过度放大问题。如图 5(a) 和(b) 所示, 拟合的一阶 微分和二阶微分信号,既保留了三层云的信息,又较 好的克服了噪声过度放大的问题。

(3) 云峰和云边界函数的构造。对于云层的 二阶微分信号, 云底和云顶的边界处在正极值附 近, 云峰处在负极值, 针对该特点, DE 将二阶微分 信号的正负值分离, 对云峰和云边界的特征进行 区分, 同时原始信号和一阶微分信号的强度也可 以反映云峰和云边界的特征强度, 因此 DE 将二阶 微分信号的正值区与一阶微分信号相乘, 负值区 与原信号相乘, 达到云的特征增强作用。DE 中云 峰函数的表达式*X*₁(*r*) 如式(2) 所示, 云边界函数的 表达式 *X*₂(*r*) 如式(3) 所示:

$$X_{2}(r) = \begin{cases} 0, & \frac{d^{2}[P(r)]}{dr^{2}} \leq 0\\ \frac{d[P(r)]}{dr} & \frac{d^{2}[P(r)]}{dr^{2}}, \frac{d^{2}[P(r)]}{dr^{2}} > 0 \end{cases}$$
(3)

DE 中不对距离修正后的回波信号进行微分是 为了避免高层过度放大的噪声被带入到微分信号 中,但由于信号的预处理中已经对噪声进行了有效 的抑制,因此 IDE 中将距离修正的回波信号代替原 始回波信号,使得边界特征增强,IDE 中的云峰函数 *I*₁(*r*)如式(4)所示,云边界函数 *I*₂(*r*)如式(5) 所示:

(4) 云层的筛选。DE 确定云层数量时,结合 X_1

(8)

(r)的均值和标准差,首先通过较大的一次阈值 a₁ 初步寻找 X₁(r) > a₁ 的区间,记为 D₁(r),排除以上 区间后再使用二次阈值 a₂ 确定 X₁(r) > a₂ 的区间, 区间数即为云层数。此方法在单层云的情况下可以 有效筛选出云层部分的信号,但当出现三层及三层 以上的多层云时,由于低层云的存在,其在云峰函数 中表现为一个很高的峰。对于 DE 使用的一次阈 值,排除的范围局限在较小的一部分,即使二次阈值 反复调整,也难以将中高层云的小峰筛选出来,存在 较高的漏判率。

对于这类缺陷,IDE 先使用一次阈值 b_1 筛选出 部分云层区间,然后结合经验阈值 3 和 - 1,在每个 初选云层的云峰高度上下,将云边界函数上满足 $I_1(r) > 3(I_2(r) < -1)$ 的区间下(上)界作为排除 的区间,记为 $D_1(r)$ 。最后使用二次阈值 b_2 确定云 层层数。 b_1 和 b_2 的表达式分别如式(6)和(7) 所示:

$$b_1 = \overline{I_1(r)} + n_1 \sigma_1 \tag{6}$$

$$b_2 = I_1(r)' + n_2 \sigma_1 \tag{7}$$

式中, $I_1(r)$ 表示 $I_1(r)$ 的均值; n_1 为经验阈值,本文 中取 2。式(7)中 $\overline{I_1(r)'}$ 表示排除一次阈值筛选 D_1 (r)后, $I_1(r)$ 的均值, n_2 为经验阈值,本文中取 4。 利用 b_1 得到的 $D_1(r)$ 如图 6(a)所示,利用 b_2 筛选 的云层如图 6(b)所示。

 $I_2(r)$ 得到每层云的云底高度 r_{base} 和云顶高度 r_{top} , c_1 的表达式如式(8)所示:

 $c_1 = n_3 \sigma_3$

本文中 n_3 取2, σ_3 为去除 $D_1(r)$ 在云边界函数 对应位置中的元素后, $I_2(r)$ 的标准差, $I_2(r)$ 如图7 (a)所示。从每层云的 r_{peak} 开始(图7(b)三角形), 向下寻找 $I_2(r) > + c_1$ 的区间下界作为该层云的 r_{base} ,向上寻找 $I_2(r) < -c_1$ 的区间上界作为该层云 的 r_{top} ,若不存在同时满足这两个条件的区间,则该 云层被视作误判,如图7(b)所示。

Fig. 7 Inversion of cloud parameters using cloud boundary function

(6)误判的排除。IDE 算法能够减少 DE 对多 层云的漏检,但也同时存在过检测现象,因此对得到 的云参数,还需要去除厚气溶胶或背景光造成的误 判情况。根据 Morille^[19]等人所述,对每层云的云峰 和云底,利用其对应的距离修正信号强度之比 *X* 进 行误判的排除,对于云峰不高于 5 km 的云层,将 *X* 小于 4 的云层剔除。对于云峰高于 5 km 的云层,将 *X* 小于 1.5 的云层剔除,如式(9)所示:

$$X = \begin{cases} \frac{P(r_{\text{peak}})r_{\text{peak}}^{2}}{P(r_{\text{base}})r_{\text{base}}^{2}} \ge 40 < r_{\text{peak}} \le 5\\ \frac{P(r_{\text{peak}})r_{\text{peak}}^{2}}{P(r_{\text{peak}})r_{\text{base}}^{2}} > 4r_{\text{peak}} > 5 \end{cases}$$
(9)

3 实验与分析

以 2022 年 1 月 14 日 SGP 站点的 24 h 微脉冲 激光雷达观测数据为例,图 8 展示了 ln(P(r)r²)的 时空分布图。

Fig. 8 Spatial and temporal distribution of LiDAR backscatter signals

at the SGP site on 24th January 2022

分别使用 DE 和 IDE 算法对该天的数据进行云 层信息的反演,得到的云时空分布图如图 9(a)和图 9(b)所示。

Fig. 9 Comparison of cloud detection results of different algorithms from 0h to 24th on 24th January 2020

由检测结果图可以看出,对于该天的激光雷达 回波信号数据,改进后的算法反演结果相较于原算 法,直观上更加"饱满",这是因为改进后的算法,通 过扩大一次阈值的排除区间,使得二次阈值能够筛 选出更多中高层的候选云峰,从而提高了云层的检 出率,因此图9(b)具备更好的时间和空间一致性。 对比图9(a)与图9(b)可以发现,在背景噪声较弱 的0时~6时的时间段内,DE 与 IDE 表现出了较好 的一致性,但随之太阳辐射变强,背景噪声变大,DE 出现了明显的误判、漏判现象。如图9(a)中的A 区 域,在8时左右出现的狭小顶层云被 DE 算法漏判, 初步判断为 DE 算法中固定化的阈值设定致使该部 分云层被漏判;相较而言,改进后的算法通过扩大一 次阈值并一次阈值后全局筛选的设定规避了这一问 题的发生。除此之外,通过图9(a)中 B 区域与图9 (b)中对应区域的比较可以发现,本文提出的 IDE 算法检测结果具有更好的连续性,与 ARM 提供的 站点标准值有着更好的一致性。在 17 时左右的时 间段内,通过原始激光雷达回波信号图可以发现,在 6~8 km 的垂直高度范围内存在明显云层,对应于 图9(b)中的 C 区域,但在图9(a)中的对应区域可 以发现,DE 算法造成了大面积的漏判现象,需要指 出的是,在 C 区域顶部改进后的算法出现了轻微的 误判情况,这是由于夹杂在此处云层信号附近的强 气溶胶层信号造成的。对比图9(a)与图9(b)中的 区域发现,改进后的算法表现出了更优秀的反演性 能,云底高度、云顶高度与激光雷达回波信号保持着 脚高的一致性,而原算法反演结果普遍出现云顶高 度较低、云底高度较高的问题,致使整个云层与实际 参考值相差较大。

对 DE 和 IDE,分别将其云层检测结果与站点 结果进行匹配,利用皮尔逊相关系数(Pearson Correlation Coefficient, PCC)和均方根误差(Root Mean Square Error, RMSE)分析算法的性能,云底高度的 反演性能如图 10(a)和图 10(b)所示,云顶高度的 反演性能如图 10(c)和图 10(d)所示。

由图 10(a)和图 10(b)可以看出,对于反演的云底 高度,IDE 获得的结果比 DE 更加集中。由图 10(c)和 图 10(d)可以看出,对于反演的云顶高度,IDE 减小了 反演结果与真实值的偏离程度。云底和云顶高度的相 关系数均有了明显的提升,均方根误差也有了大幅的 下降。表明了改进后的算法能够获得更好地准确度。 对于反演的云顶高度较实际值均偏低的表现,这是由 于激光雷达发射的脉冲在能够穿透云层的情况下,在 还未穿透时便下降到背景噪声水平,也是激光雷达反 演云层参数时出现的不可避免的情况。

Fig. 10 Comparison of cloud-top height inversion performance of the two algorithms from 0h to 24 h on 14th January 2020

4 结 论

本文基于微分增强法,通过优化拟合点数、改进云峰和云边界函数表达式以及扩大一次阈值的 排除区间,提出了改进算法用于反演云层的垂直 结构。针对激光雷达的一阶和二阶微分回波信 号,分析了拟合点数对于失真度和噪声的影响,以 距离修正的回波信号代替原始回波信号,增加了 云区域与非云区域的对比。通过扩大一次阈值的 排除区间,筛选出了更多的候选云峰,同时也使得 云底和云顶高度更加接近真实值。利用 SGP 站点 实测激光雷达数据进行反演结果的分析,使用 IDE 算法得到的云底高度及云顶高度的相关系数均大 于原算法,均方根误差均小于原算法,验证了改进 后算法的准确性。

参考文献:

Zhang Chunguang, Zhang Yujun, Han Daowen, et al. Development of the technology for retrieving cloud [J]. The Journal of Light Scattering, 2007, 19(4):388 - 394. (in Chinese)

张春光,张玉钧,韩道文,等.测云技术研究进展[J]. 光散射学报,2007,19(4):388-394.

[2] Zhang Xiaoye, Liao Hong, Wang Fenjuan. The effects of aerosols and clouds on climate change and their responses
 [J]. Climate Change Research, 2014, 10(1):37 - 39. (in Chinese)

张小曳,廖宏,王芬娟.对 IPCC 第五次评估报告气溶 胶一云对气候变化影响与响应结论的解读[J]. 气候 变化研究进展,2014,10(1):37-39.

- [3] Mo Weiqiang, Yin Shuxian. A comparative analysis of cloud height measurement by LiDAR and artificial observation[C]//The 32nd annual meeting of Chinese Meteorological Society S16 Ground-Based Remote Sensing Observation Technology and Application, 2015. (in Chinese) 莫伟强,尹淑娴. 激光雷达测云高与人工观测的对比 分析[C]//第 32 届中国气象学会年会, 2015.
- [4] Wang J, Liu C, Yao B, et al. A multilayer cloud detection algorithm for the Suomi-NPP Visible Infrared Imager Radiometer Suite(VIIRS) [J]. Remote Sensing of Environment, 2019, 227:1-11.
- [5] Wang Jian, Cui Tianxiang, Wang Yi, et al. Cloud detection for GF-5 visible-shortwave infrared advanced hyperspectral image [J]. Acta Optica Sinica, 2021, 41 (9): 0928003. (in Chinese)

王健,崔天翔,王一,等.高分五号可见短波红外高光 谱影像云检测研究[J].光学学报,2021,41 (9):0928003.

[6] Cheng Z, Wei M, Zhu Y, et al. Cloud type identification for a landfalling typhoon based on millimeter-wave radar range-height-indicator data [J]. Frontiers of Earth Science, 2019, 13(4):829-835. [7] Di Huige, Hua Dengxin. Research progress of LiDAR in cloud detection [J]. Acta Optica Sinica, 2022, 42(6): 0600002. (in Chinese)
狄慧鸽,华灯鑫. 云探测中的激光雷达技术研究进展

[J]. 光学学报,2022,42(6):0600002.

- [8] Xu Fan, Chang Jianhua, Liu Binggang, et al. De-noising method research for LiDAR echo signal based on variational mode decomposition[J]. Laser & Infrared, 2018, 48 (11):1443 1448. (in Chinese)
 徐帆,常建华,刘秉刚,等. 基于 VMD 的激光雷达回波 信号去噪方法研究[J]. 激光与红外, 2018, 48 (11): 1443 1448.
- [9] Klett J D. Stable analytical inversion solution for processing LiDAR returns[J]. Applied Optics, 1981, 20(2):211-220.
- [10] Fernald F G, Analysis of atmospheric LiDAR observations:somecomments [J]. Applied Optics, 1984, 23 (5): 652-653.
- [11] Han Daowen, Liu Wenqing, Zhang Yujun, et al. Memorable glide window integral algorithm for retrieving cloud height[J]. High Power Laser and Particle Beams, 2008, 20(1):1-5. (in Chinese)
 韩道文,刘文清,张玉钧,等. 用于反演云层高度的记忆式滑动窗口积分算法[J]. 强激光与粒子束, 2008, 20(1):1-5.
- [12] Mao F Y, Gong W, Zhu Z. Simple multiscale algorithm for layer detection with LiDAR[J]. Applied Optics, 2011, 50 (36):6591-6598.
- [13] Li Zichen, Hao Minglei, Zan Yu Xuan. Review on cloudbase recognition algorithms with LiDAR[J]. Meteorological, Hydrological and Marine Instruments, 2016, 33(4): 73 - 79. (in Chinese)

李子晨,郝明磊,昝宇暄.激光雷达云底识别算法综述 [J]. 气象水文海洋仪器,2016,33(4):73-79.

- [14] Pal S R, Steinbrecht W, Carswell A I. Automated method for LiDAR determination of cloud-base height and vertical extent[J]. Applied Optics, 1992, 31(10):1488-1494.
- [15] Bu Lingbin, Zhuang Yizhou, Xu Zhongbing, et al. Differential enhancing method of laser ceilometer for detection of cloud [J]. Infrared and Laser Engineering, 2013, 42 (8):2226-2230. (in Chinese)
 卜令兵,庄一洲,徐中兵,等. 用于激光云高仪的微分 增强云检测方法[J]. 红外与激光工程,2013,42(8):2226-2230.
- [16] Dou Xiaolei, Chang Jianhua, Liu Zhengxin, et al. An aerosol extinction coefficient inversion method based on Miescattering LiDAR [J]. Laser & Infrared, 2019, 49(9): 1047 1053. (in Chinese)
 豆晓雷,常建华,刘振兴,等. 基于 Mie 散射激光雷达的 气溶胶消光系数反演方法[J]. 激光与红外, 2019, 49(9): 1047 1053.
- [17] Campbell J R, Hlavka D L, Welton E J, et al. Full-time, eye-safe cloud and aerosol LiDAR observation at atmospheric radiation measurement program sites: instruments and data processing[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(4):431-442.
- [18] Wang Z, Sassen K. Cloud type and macrophysical property retrieval using multiple remote sensors [J]. Journal of Applied Meteorology, 2001, 40(10):1665-1683.
- [19] Morille Y, Haeffelin, et al. Strat: an automated algorithm to retrieve the vertical structure of the atmosphere from single-channel LiDAR data[J]. Journal of Atmospheric & Oceanic Technology, 2007, 24(5):761-775.