文章编号:1001-5078(2024)04-0626-09

·光学技术 ·

直角三棱镜补充视角的密封圈缺陷检测研究

秦 琴,曹 龙,庄绪宁,汪光宇,屠子美 (上海第二工业大学,上海 201209)

摘 要:为解决三维激光检测中被测物体底面点云无法被高效获取的问题,本文提出了基于直 角三棱镜折射原理的补充视角三维点云扫描获取方法。该方法使用直角三棱镜将底面图像折 射到侧面,弥补了三维检测的底面检测视角缺失的问题,补充了底面检测视角。本文以密封圈 作为缺陷检测对象,采用结构光三维相机采集三维点云。与直接扫描法相比,本方法可以一次 性实时、快速地寻找出密封圈完整的表面缺陷,尤其使底面缺陷检测变得更容易,且无需设置 特殊的夹取装置或复杂的机械臂等机械结构,仅需增加一块直角三棱镜。实验证实,直角三棱 镜补充视角的点云扫描方法能够达到成像要求,对常见的密封圈断裂缺陷与塌陷缺陷均可很 好的检出,检测准确率可达到100%,满足密封密封圈缺陷检测的需求。

关键词:三维检测;直角三棱镜;补充视角;折射;反射;缺陷检测

中图分类号:TN247;TP274 文献标识码:A DOI:10.3969/j.issn.1001-5078.2024.04.021

Study of seal defect detection with complementary viewing angle of a right-angle prism

QIN Qin, CAO Long, ZHUANG Xu-ning, WANG Guang-yu, TU Zi-mei (Shanghai Polytechnic University, Shanghai 201209, China)

Abstract: To address the problem that the point cloud on the bottom surface of the measured object cannot be acquired efficiently in 3D laser inspection, a supplementary perspective 3D point cloud scanning method based on the principle of right-angle prism refraction is proposed in this paper. The method adopts a right-angle prism to refract the bottom view image to the side, compensating for the lack of a bottom detection viewpoint for 3D detection and complements the bottom detection viewpoint. The sealing ring is taken as the defect detection object, and a structured light 3D camera is employed to collect the 3D point cloud. Compared with the direct scanning methods, this approach allows for real-time and rapid identification of surface defects with intact sealing rings in a single operation. It particularly simplifies the detection of bottom defects, eliminating the need for specialized gripping devices or complex mechanical structures such as robotic arms, and only the addition of a right-angle prism is required. Experimental results demonstrate that the point cloud scanning method with the supplementary perspective using a right-angle prism can meet the imaging requirements and effectively detect common defects such as fracture and collapse in sealing rings, achieving a detection accuracy of 100 % and fulfilling the requirements of sealing rubber ring defect detection.

Keywords: 3D inspection; right-angle prism; supplementary perspective; refraction; reflection; defect detection

作者简介:秦 琴(1978 –),女,副教授,硕士生导师,主要从事光图像与检测方面的研究。E-mail:qinqin@sspu.edu.cn 通讯作者:曹 龙(1993 –),男,硕士研究生,主要从事图像与检测方面的研究。E-mail:long199706@163.com 收稿日期:2023-07-24;修订日期:2023-10-16

1 引 言

光学技术在制造业中的应用为制造技术带来了 革命性的变化,也就是说光学技术既可作为直接的 加工工具,又可作为工艺控制或诊断的工具,其作用 对于各种工业都很重要,如对于半导体加工工业、民 用建筑业、化学制造业等^[1]。基于机器视觉的表面 缺陷检测主要包括二维检测和三维检测^[2],二维检 测已较为成熟,是目前比较主流的缺陷检测方式,近 些年的典型案例有应用于绝缘子的缺陷检测、铝型 材表面缺陷检测与 PCB 板表面缺陷检测等^[3-6]。 针对密封圈的检测,黄连^[7]等人提出的基于奇异值 分解的方法,使用多相机采集上下位置不同的局部 图像,可快速对缺陷信息进行定位。

目前,三维检测也逐渐成为了研究热点,在检 测、分割、拼接与分类等方面都有体现。如康自 祥^[8]等人设计了基于 Transformer 的体素化激光点 云目标检测算法,提供了一种改善检测效率的目标 检测算法。刘翔宇等人^[9]改进了贪婪投影三角化 算法的激光点云快速三维重建,可以在保证重建相 对准确的模型前提下缩短重建时间。夏军勇等 人^[10]针对配准问题设计了基于 KDTree 改进了 Super 4PCS + ICP 算法,提升了配准精度。朱天晓等 人^[11]合偏移自注意力机制和残差连接设计的点云 分类,为点云分类带来了更好的鲁棒性。以及温智 成等人^[12]结合局部增强与反向残差设计了点云语 义分割网络在分割精度上达到 61,相比于基准网络 DGCNN 提高 14,有效地提高了分类模型性能。

虽然 3D 检测方面已有很多改善性研究。但针 对密封圈的三维检测目前还有很多问题需要解决, 首当其冲就是密封圈底面缺陷检测问题,密封圈本 身较小,且在检测过程中,其顶部与底部的位置是随 机的。在目前的检测技术中,针对底面缺陷检测,通 常可以使用手工翻转、机械臂协作翻转、夹持与超声 波扫描的方法获取图像。

手工翻转即操作人员手动将被测物反转过来,但 是此方法位置不固定,影响后续拼接;机械臂协作翻 转即一台机械臂用于移动被测物体,另一台机械臂用 于 3D 扫描,虽然此方法可以采集到每一面的点云,但 是结构复杂且对运动控制精度的要求高,如 Wagner M 等人^[13]设计的由两个机械臂构成的 3D 检测系统; 夹持法即使用传送带将被测物从两侧夹住,因此,此 方法仅适用于刚性且相对规则的物体,如 Zhou X 等^[14]设计的玻璃瓶检测系统,若将被测对象替换为 橡胶制品,橡胶制品则会受力变形或脱离;超声检测, 受超声波的性质影响,检测效果与缺陷面与超声波传 播方向夹角相关,容易出现漏检^[15]。针对小目标容 易漏检的问题,近些年的文献在轴承检测、无人机航 拍与算法改进方面都有提及^[16-18]。

为解决上述 3D 检测中小目标底部缺陷检测问题, 本文利用棱镜的折射原理,补充了底部视角,解决了 3D 缺陷检测不能扫描到底部缺陷与扫描底部过程复杂的 问题,从而获得完整度全方位的缺陷检测。并通过实 验验证此方法适用于类似于密封密封圈这种非刚性、 微小以及不规则形状的检测对象。与此同时,透过直 角三棱镜的点云扫描不仅可以扫描到底部点云,还可 以同时扫描到侧边点云,以用于检测侧面缺陷。

2 技术原理

2.1 结构光成像原理

3D 结构光技术通常包括三个主要组件:光源、 相机和投影系统。本文使用激光光源的结构光相 机,通过激光光源投影条纹图案至物体表面;通过相 机采集一系列的投影图像,计算物体 3D 信息;投影 系统用于将光源产生的图案投射到物体表面,以提 供精确的测量和重建数据^[19]。

2.2 直角三棱镜的折射

直角棱镜可以用于将光线从一个方向偏转到另 一个方向,也可以用于将光线分离成两个方向,同时 保持光线的相位和振幅不变。

本文利用直接三棱镜将光线从一个方向偏转到 另一个方向,如图1光路图所示,需要保证光线的入 射角不超过全反射角度范围,使用直角三棱镜将侧 面的结构光3D相机投影出的激光光线折射射到底 面,并从底面的反射光线拍摄到返回的光线画面。 从而获得底部3D点云。

图 1 各角度光线经过直角三棱镜光路示意 Fig. 1 The light from all angles passes through the right-angled prism light path

光线在两个光路之间的光路等效于一个平行玻 璃板,会发生折射如图2所示。当平行玻璃板的厚 度是*t*时,像面距离光轴的位移距离:

$$d \approx \frac{(n-1) \cdot t}{n} \tag{1}$$

其中,n是折射率。

图 2 折射导致的图像位移

Fig. 2 Image displacement caused by refraction

由上述条件可以看出,当物体放在如图中3所示的位置时,则经过折射后,观察视角观察到的物体位于 *B*,距离三棱镜光轴底面的距离为 *d*。其中 *d* 的距离与 3D 相机的拍摄位置和三棱镜的折射率有关。

Fig. 3 Diagram of refraction by a prism

以下文中最终选取的 3D 相机视角相对三棱镜 侧面垂线相差 10°为例,本文使用的三棱镜直角边 长为 40 mm,以常见玻璃的折射率 1.5 代入计算,带 入公式后,计算光轴的位移 d 约为 13.3 mm。

2.3 直角三棱镜的反射

根据图 4 所示,经过直角三棱镜的图像还发生 了反射,因此成像可能为左右一致而上下颠倒或左 右不一上下一致。所有还需要将采集到的点云进行 镜像变换。

Fig. 4 Diagram of triangular prism reflection

进行镜像变换,首先,确定要进行镜像的轴。通 常情况下,点云的镜像变换是在坐标轴上进行的,例 如 *X* 轴、*Y* 轴或 *Z* 轴。

对于选择的镜像轴,将所有点的对应坐标取负 值。以本文为例,最终得到的图像上下是反的,本文 将其定义为 Z 轴,那么点云中每个点的 Z 坐标将变 为其相反数即将点云中的每个点乘以[1,1,-1]即 可。从而实现镜像变换。

2.4 直角三棱镜对结构光 3D 相机的成像像差分析

由于结构光相机通过拍摄条纹获取图像后转换 为3D点云,因此,成像原理与2D相机相似。相机 的像差包括球差、色差、像散、畸变与弯曲场^[20]。若 在相机的成像光路中加入一块直接三棱镜,那么会 使相机新增色差的像差。

本文所使用的结构光相机为单色激光光源,同时结构光相机镜头部分增加了滤光片,因此避免了 色散造成的色差像差。即增加直角三棱镜后对原有 的成像系统无影响。

2.5 技术原理总结

通过上述直角三棱镜的折射分析、反射分析以 及像差分析,可以发现与直角拍摄相比,增加直角三 棱镜后图像分别产生了位移和翻转,因为位移不影 响图像质量和缺陷检测,翻转可通过后期翻转修正, 因此通过技术原理分析认为增加直角三棱镜用于采 集底面点云的方案可行。

3 实验平台设计构建

根据密封密封圈的体积(13.5 mm×6.5 mm× 4.5 mm)、结构光3D相机的安装净距离和3D相机采 样范围(近端71.0 mm×98.0 mm,远端100.0 mm× 154.0 mm),设计试验平台。

如图 5 所示,利用直角三棱镜可以拍摄到如下 视角的照片,可以看到底部视角能够很清晰的反射 在垂直面上。

图 5 三棱镜折射观察 Fig. 5 Observation of refraction by a prism

前面提到,若想要获取到完整度底部点云信 息,需要结构光3D相机的投影光线范围在左侧边 的指定角度上,因此需要选择一个合适的拍摄 角度。

3.1 拍摄角度选取

根据实验平台,调整 3D 结构光相机与三棱镜 侧面的相对位置,使其透过三棱镜,可以获得较好效 果的点云画面。

垂直三棱镜侧面拍摄,由图6可以看出,3D结 构光相机在位于三棱镜侧面垂直90°时可获得最完 整的画面,但经过实际测试发现,由于使用了三棱镜 接近垂直拍摄会有很反光问题,如6图所示。

图 6 90°时点云及照片 Fig. 6 Point cloud and photos at 90°

为避免光斑出现,将3D结构光相机与三棱镜 偏移一定的角度,以避开镜面反射的光线。但如果 偏移角度过大,则会出现点云采样损失,不完整的情 况。如图7偏移26°所示。

(a) 点云 (b)照片 图 7 26°时点云及照片 Fig. 7 Point cloud and photos at 26°

经过多次实验,验证相机相对与三棱镜侧面垂 直面,向上偏移10°左右,可以在获得较为完整点 云,同时没有其他干扰点云,如图8所示。

图 8 10°时点云及照片 Fig. 8 Point cloud and photos at 10°

针对本文实验平台各部件放置效果如图 9 所示。

图9 直角三棱镜与3D相机相对位置

Fig. 9 Relative position between right-angled prism and 3D camera

3.2 采集装置搭建

设计实验平台效果如图 10 所示。为了使垂直拍 摄的点云图像不受背景干扰,实验平台使用分光棱镜 承载,使得照射到背景的光线全部被折射到侧边,无 法反射回来。实验平台上方为结构光3D相机用于采 集3D点云,下方为承载平台,用于承载密封圈。

(a)垂直拍摄实验平台 (b)底面折射点云采集实验平台 图 10 采样平台

Fig. 1 Sampling platform

底面折射点云采集实验平台的左侧承载平台的 上方是一个分光棱镜,本文利用其内部的直角三棱 镜,完成激光光线的折射以及反射光线的采集,右侧 是结构光3D相机。

4 实验应用

4.1 3D 点云处理

根据实验设计,设计整体的点云采样处理流程

如图11所示。

Fig. 11 Point cloud sampling detection process

4.1.1 归一化

由于环境光照、拍摄角度等影响,如图 12 所示, 三棱镜拍摄采集到的点云相比垂直视角直接拍摄的 点云点云信息在底面以外的点云信息不尽相同如图 13 所示,因此实验首先两种方法对采集到的点云进 行归一化,裁剪掉多余点云,以确保两种方法采集到 的点云只包含密封圈底部的点云信息。

(a)透过三棱镜拍摄
 (b)垂直直接拍摄
 图 12 原始点云
 Fig. 12 Original point cloud
 将点云旋转到侧面,设置裁切面,归一化后的点
 云只保留需要测量的部分,如图 13 所示。

4.1.2 点云滤波

因采集的点云,会因镜面反射,空气灰尘等各种 原因,产生一些噪点,故需要对采集到的原始点云进 行滤波。在对比了体素滤波、半径滤波、统计滤波与 泊松重建几种常用滤波方法后,发现均可获得较好 的效果,故本文选择了速度较快的统计滤波 算法^[21]。

4.2 缺陷检测

本文主要通过检测尺寸缺陷、断裂缺陷与孔洞 缺陷来检测缺密封圈存在的缺陷,通过点云配准来 对比两种拍摄方式获取到的点云。 4.2.1 尺寸不符合检测

使用 PolyWorks 测量软件,将采集到的点云与 密封圈模型对齐,验证平面或圆环形状特征的匹配 度与特征尺寸偏差。

4.2.2 断裂检测

由于本文的断裂缺陷比较单一,因此仅需要使 用深度图,进行二值化处理,提取裂痕即可。转化为 深度图需要将点云图像旋转到断裂检测面,即垂直 于密封圈底面,因此需要使用找平面算法,将点云旋 转到垂直于密封圈底面的位置,以便更容易二值化 取得断裂的裂缝。

由于底部点云数据只具有唯一平面,利用此特 点,使用随机采样一致性(Ransac)算法可进行平面 提取。该算法利用迭代拟合从一系列包含有离异值 的数据中计算出数学模型的参数^[22]。

4.2.3 孔洞检测

本文选择了一种分而治之的查找孔洞的方法, 基于拓扑来查找孔洞。使用了"alpha complex"的拓 扑结构,该结构可以将点云分解为一组三角形,然后 通过计算这些三角形的边缘来查找孔洞^[23]。

4.2.4 点云配准原理

对比点云的质量是将两种方法采集的点云进行 配准后比较。本文点云配准方法分为两步,首先使 用 FPFH(Fast Point Feature Histograms)进行粗配 准,再使用 ICP 进行精配准,可以大大减少 ICP(Iterative Closest Point)迭代次数^[24]。

FPFH 算法是一种用于点云特征描述的算法。 它是 SPFH(Simple Point Feature Histograms)算法的 改进版本,可以更快地计算点云的特征。

如文献[25]中的图所示,当在计算源点 *P_q*点 三元组的时候,第一步只计算源点与邻点的三元组, 即五组数据(标记为粉色线),之后分别计算邻点在 其邻域的三元组,并且赋以基于距离的权重,最后将 三元组组合,赋值给*P_q*,使用与 PFH 同样的方法,计 算直方图,得到统计特征^[25]。计算公式如下:

$$FPFH(p) = SPF(p) + \frac{1}{k} \sum_{i=1}^{k} \frac{1}{\omega_k} \cdot SPF(p_k) \quad (2)$$

FPFH 算法的基本思想是:对于每个点,计算其 与其邻居点之间的关系,并将这些关系编码为一个 直方图。这个直方图被称为"FPFH 特征",可以用 于描述点云中的形状信息^[25]。

经过测试,针对本文的密封圈点云,使用此方法

进行粗配准后,ICP 仅需迭代 30 次左右就可得到较 好的配准效果。

4.3 点云质量验证实验设置

点云质量对比实验:使用采集装置的两种采样 方式作对比,比较两种拍摄方式下获取到的点云数 量与噪点数量,以评估三棱镜拍摄到的点云质量是 否与垂直拍摄的点云存在较大差距。

点云配准比较:通过多张点云对比,验证透过三 棱镜拍摄到的点云与直接拍摄的点云差别不大。通 过对比同一个采集对象多次直接拍摄的点云,获得 一个用于对比的点云配准参数,然后再将直接拍摄 的点云与透过三棱镜拍摄的点云使用配准算法作对 比,根据对比的点云配准结果,使用配准结果验证两 种方式采集到的点云的相似程度。

缺陷检测对比实验:对比不同的检测方法检 测两种采样方法采集到的点云用于检测的效果。 使用密封圈常见的两种缺陷(塌陷、不完全断裂) 以及上述的缺陷检测方法,验证两种点云的缺陷 参数,来对比两种采样方式采集到的点云的缺陷 检测效果。

5 实验结果与分析

5.1 点云质量对比实验

对点云进行归一化与滤波处理,避免如图 14 中的(a)、(b)离群点云会影响检测结果。滤波后的点云如图 14 的(c)、(d)所示,可以看到,两种点云滤波后差别已较小。

通过对比两种采集方法获得的点云数量与噪点 数量,对比两种点云的质量。实验统计了10张点云 在两种方案下的点云滤波前后的数量,如表1所示。

Tab. 1 Comparison before and after

point cloud filtering

垂直拍摄密 封圈底部 点云数量	垂直拍摄 滤波后点云 数量	透过直角 三棱镜拍摄 点云数量	透过直角 三棱镜拍摄 滤波点云数量
6210	5948	6254	5933
6013	5766	6029	5753
6464	6139	6474	6202
6616	6317	6683	6487
6178	5883	6146	5802
6393	6175	6560	6274
6732	6465	6651	6597
6355	6095	6288	6005
6133	5955	6240	5956
5936	5694	6127	5980

为了更清晰的表示两种采集方式获取的点云质 量,将表格绘制成折线图如图 15 所示。

before and after two shooting meth $\mathrm{d}\mathrm{s}^\prime$ filtering

表2 两种拍摄方式下点云滤波前后参数对比

Tabl. 2 Comparison of point cloud filtering parameters before and after filtering under two shooting modes

项目	垂直拍摄密 封圈底部点 云数量	透过直角三 棱镜拍摄点 云数量	垂直拍摄滤 波后点云 数量	透过直角三棱 镜拍摄滤波 点云数量
平均值	6303	6345.2	6043.7	6098.9
最大值	6732	6683	6465	6597
最小值	5936	6029	5694	5753
均方根 误差	243.26	219. 39	229.026	268. 72

进一步简化采样数据,计算每种情况下点云 数量的平均值用于表示平均点云数量,以查看两 种方式拍摄到的点云数量是否一致。计算最大值 和最小值以查看最差情况下的采集点云对比。计 算均方根误差,以查看同一种方式拍摄的点云数 量波动,表2展示了两种拍摄方式下点云滤波前 后参数对比。

滤波签点云的最大值和最小值以及平均值都较 为接近,即两种方式采集的点云原始质量相差不大。 透过直角三棱镜拍摄的滤波后的点云相较于垂直拍 摄的点云噪点更少一点,但差别较小,可以认为是随 机误差。

由均方根误差可以看出,透过直角三棱镜拍 摄滤波点云数量波动较滤波之前更大,即透过三 棱镜采集的点云的噪点数量较为随机。总体来 说,归一化后的两种拍摄方式获取到的点云差距 不大。 5.2 点云配准比较

使用上述的三种特征的 10 张缺陷点云,对同一 个密封圈的点云的不同采集方法做配准,配准效果 如图 16,计算配准结果并取配准结果的平均匹配度 与平均均方根误差作比较依据,表 3 展示了匹配度 与配准均方根误差。

表3 匹配度与配准均方根误差

Tal	b. 3	Μ	Iatchin	g (degree	and	registration	root	mean	square	erro
				0							

	直接拍摄两次结果对比		透过三棱镜拍摄两次结果对比		透过三棱镜拍摄与直接拍摄结果对比	
分类	平均匹配度	平均配准均方根误差	平均匹配度	平均配准均方根误差	平均匹配度	平均配准均方根误差
完好	0. 979	0. 0571	0. 978	0. 0581	0.969	0.0645
不完全断裂缺陷	0.969	0. 0545	0. 966	0. 0576	0. 958	0.0650
塌陷缺陷	0. 977	0. 0591	0. 975	0. 0588	0.966	0.0656

根据表3的数据数据统计表格可以看出,直接 拍摄的多次拍摄结果对比与透过三棱镜拍摄的多次 拍摄结果对比,平均匹配度几乎相同,透过三棱镜拍 摄的点云多次结果的均方根误差略大一点。透过三 棱镜拍摄的点云与直接拍摄的点云对比结果相较于 直接拍摄的多次对比结果,平均匹配度小了0.01, 平均均方根误差大了0.0074,即两种拍摄方式下, 拍摄到的点云,相较于直接拍摄的多次结果对比略 差,但差别较小,可应用于缺陷检测。

5.3 缺陷检测对比实验

对于不完全断裂与塌陷两种缺陷,对比垂直拍 摄与经过直角三棱镜拍摄的效果如图 17。

(a)垂直拍摄不完全断裂点云

(b) 三棱镜拍摄不完全断裂点云

图 17 两种方式拍摄到的点云缺陷示意 Fig. 17 Illustration of point cloud defects captured

by two different methods

由图 17 可以看出,两种拍摄方式均可清晰的显示缺陷。每种缺陷选择 100 个密封圈,与 100 个完好的密封圈共同检测获得如表 4 的检测结果。出现尺寸不符、断续与孔洞的任一缺陷认为存在缺陷,因个别密封圈存在多种缺陷,最终每种检测方式检测到的缺陷数量如表 5 所示。

由结果可以看出,两种方式拍摄到的点云均能 很好的检测到各种实际的缺陷,两种方式拍摄到的 点云可应用于不完全断裂缺陷和塌陷缺陷的检测。

延伸到细致的尺寸检测、断续检测与孔洞检测,仍然 能达到与直接拍摄的点云相同的检测效果。

表4 两种方式拍摄到的点云检测正确率

Tab. 4 Accuracy of point cloud detection

obtained by two methods

分类	直接拍摄底部点云的 检测正确率/%	透过三棱镜拍摄的底部 点云的缺陷检正确率/%
完好	100	100
不完全断裂缺陷	100	100
塌陷缺陷	100	100

表5 两种方式拍摄到的点云各缺陷数量

Tab. 5 Proportions of defects in point clouds captured

分类	直角拍摄 各种缺陷 数量	透过三棱镜 拍摄各种 缺陷数量
尺寸不符合占比(±0.1 mm)	70	70
断续占比(最长处长度≥0.5 mm)	140	140
孔洞占比(≥0.01 mm ²)	80	80

by two different methods

透过三棱镜拍摄的点云在达到相同的检测效果 的同时,不需要翻动密封圈。即可在不需要其他操 作的前提下,采集到能够满足底部缺陷检测的点云, 完成补充视角的三维密封圈缺陷检测。

6 总结与展望

针对密封密封圈底面点云不易采集检测的问题,本文提出了直角三棱镜补充采集视角的方法,为 了验证了使用直角三棱镜获取底部点云的可行性, 本文通过点云数量对比实验与点云配准实验,结果 表明透过三棱镜采集的点云与直角拍摄采集到的点 云依然是可以准确的检测出缺陷的,即使用直角三 棱镜获取底部点云的方法可行。通过检测实验对 比,两种拍摄方式采集到的点云的检测结果相同,即 采集到的点云质量能够与直接拍摄到的点云精度相 媲美,因此本文认为透过三棱镜采集到的点云完全 满足密封圈底面缺陷采集检测的需求。

本研究为 3D 检测中完整的采集到被测物体的 点云提供了一种新方法。将此方法应用于工业检测 现场,可简单快捷的获得底面点云,在无需太大改动 产线的前提下,为底面缺陷检测提供补充视角,从而 使底面缺陷检测变得更容易,无需设置特殊的夹取 装置或复杂的机械臂等机械结构。

参考文献:

- [1] Hu Weijie. Study of developing trend of optics[J]. Optical Technique, 1999, (6):11-14. (in Chinese)
 胡威捷. 光学技术的新概念及其发展趋势的探讨[J].
 光学技术, 1999, (6):11-14.
- [2] Tang Bo, Kong Jianyi, Wu, Shiqian. Review of surface defect detection based on machine vision[J]. Journal of Image and Graphics, 2017, 22(12):1640 1663. (in Chinese)
 汤勃,孔建益, 伍世虔. 机器视觉表面缺陷检测综述

[J].中国图象图形学报,2017,22(12):1640-1663.

[3] Li Bin, Qu Luyao, Zhu Xinshan, et al. Insulator defect detection based on multi-scale feature fusion [J]. Transactions of China Electrotechnical Society, 2023, 38 (1): 60-70. (in Chinese)
李斌, 屈璐瑶, 朱新山, 等. 基于多尺度特征融合的绝

缘子缺陷检测[J]. 电工技术学报,2023,38(1): 60-70.

- [4] Liu Xiaobao, Zhang Jiaxiang, Yin Yanchao, et al. Surface defect detection of aluminum profile based on master-slave feature fusion drive[J]. Computer Integrated Manufacturing Systems, 2023, 29(1):192 199. (in Chinese) 刘孝保,张嘉祥,阴艳超,等. 主从特征融合驱动的铝型材表面缺陷检测[J]. 计算机集成制造系统, 2023, 29(1):192 199.
- [5] Shen Z, Wang S, Dou J, et al. Design and implementation of PCB detection and classification system based on machine vision [C]//Advanced Manufacturing and Automation VIII 8. Springer Singapore, 2019:253 - 261.
- [6] Su Hu, Zhang Jiabin, Zhang Bohao, et al. Review of surface defect inspection based on visual perception [J]. Computer Integrated Manufacturing Systems, 2023, 29 (1):169-191. (in Chinese)
 苏虎,张家斌,张博豪,等. 基于视觉感知的表面缺陷检测综述[J]. 计算机集成制造系统, 2023, 29 (1): 169-191.
- [7] Huang Lian, LIU Xiaojun, LEI Zili, GU Hao, LIU Yunfeng, DI Chaoxiong. Surface defect detection method of rubber sealing ring based on singular value decomposition
 [J]. Lubrication Engineering, 2021, 46(11):84 88. (in Chinese)
 黄连,刘晓军, 雷自力等. 基于奇异值分解的橡胶密封

圈表面缺陷检测方法[J]. 润滑与密封,2021,46(11): 84-88.

[8] Kang Zixiang, Wang Shengzhe, Cui Yuyong, et al. Transformer based algorithm for voxelized laser point cloud target detection[J]. Laser & Infrared, 2023, 53(2):202 - 207. (in Chinese)
康自祥,王升哲,崔雨勇,等. 基于 Transformer 的体素
化激光点云目标检测算法[J]. 激光与红外, 2023, 53

(2):202-207.

- [9] Liu Xiangyu, Wang Jian, Chang Qingfa, et al. Fast 3D reconstruction of point cloud based on improved greedy projection triangulation algorithm [J]. Laser & Infrared, 2022,52(5):763-770. (in Chinese)
 刘翔宇, 王健, 常清法, 等. 改进贪婪投影三角化算法的激光点云快速三维重建[J]. 激光与红外,2022,52 (5):763-770.
- [10] Xia Junyong, Gao Ruijie, Zhong Fei. Study on the application of super 4PCS + ICP algorithm based on KDTree improvement in point cloud alignment[J]. Laser & Infrared, 2023,53(9):1333 1338. (in Chinese)
 夏军勇,高睿杰,钟飞. 基于 KDTree 改进的 Super 4PCS + ICP 算法在点云配准中的应用研究[J]. 激光与红外,2023,53(9):1333 1338.
- [11] Zhu Tianxiao, Yan Fengting. Point cloud classification combining offset self attentionmechanism and residual connection[J]. Laser & Infrared, 2023, 53(8):1177 1185. (in Chinese)
 朱天晓, 闫丰亭. 结合偏移自注意力机制和残差连接

的点云分类 [J]. 激光与红外, 2023, 53 (8): 1177-1185.

- [12] Wen Zhicheng, Wang Lei, Feng Jinliang, et al. Combining local augmentation and reverse residual for point cloud semantic segmentation network[J]. Laser & Infrared, 2023, 53(7):1131-1136. (in Chinese)
 温智成,王蕾,冯锦梁,等. 结合局部增强与反向残差的点云语义分割网络[J]. 激光与红外, 2023, 53(7): 1131-1136.
- [13] Hess P, Reitelshoefer S, Fvanbe F, et al. 3D scanning of workpieces with cooperative industrial robot arms [C]// Proceedings of ISR 2016:47st International Symposium on Robotics. VDE, 2016:1 - 8.
- [14] Zhou X, Wang Y, Zhu Q, et al. A surface defect detection framework for glass bottle bottom using visual attention model and wavelet transform [J]. IEEE Transactions on Industrial Informatics, 2019, 16(4):2189 - 2201.
- [15] Zeng Wei, Wang Haitao, Tian Guiyun, et al. Research on laser ultrasonic defect signal detection technology based on energy analysis [J]. Chinese Journal of Scientific Instrument, 2014, 35(3):650 - 655. (in Chinese) 曾伟,王海涛,田贵云,等. 基于能量分析的激光超声 波缺陷检测研究 [J]. 仪器仪表学报, 2014, 35(3): 650 - 655.

- [16] Li Yadong, Ma Xing, Mu Chunyang, et al. Improved small target detection method of bearing defects in YOLOX network [J]. Computer Engineering and Application, 2023, 59(1):100-107. (in Chinese)
 李亚东,马行,穆春阳,等.改进 YOLOX 网络的轴承缺 陷小目标检测方法[J]. 计算机工程与应用, 2023, 59 (1):100-107.
- [17] Liu Shudong, Liu Yehui, Sun Yemei, et al. Small object detection in UAV aerial images based on inverted residual attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3):514-524. (in Chinese) 刘树东,刘业辉,孙叶美,等. 基于倒置残差注意力的 无人机航拍图像小目标检测[J]. 北京航空航天大学 学报, 2023, 49(3):514-524.
- [18] Qi Linglong, Gao Jianling. Small object detection based on improved YOLOv7 [J]. Computer Engineering, 2023, 49 (1):41-48. (in Chinese) 戚玲珑,高建瓴. 基于改进 YOLOv7 的小目标检测 [J].计算机工程,2023,49(1):41-48.
- [19] Zhang S. High-speed 3D shape measurement with structured light methods: a review [J]. Optics and Lasers in Engineering, 2018, 106:119-131.
- [20] Rose, Harald H. Historical aspects of aberration correction[J]. Journal of Electron Microscopy, 2009, 58(3):77 85.
- [21] Liu Bin, Li Xuemei. A self-adaptive dual radius filtering algorithm based on LIDAR point cloud [J]. Acta Armamentarii, 2023, (9):2768 2777. (in Chinese) 柳斌,李雪梅. 一种基于激光雷达点云的自适应双半径滤波算法[J]. 兵工学报,2023, (9):2768 2777.
- [22] Tang Y, He L, Xiao H, et al. Fracture extraction from smooth rock surfaces using depth image segmentation
 [J]. Rock Mechanics and Rock Engineering, 2021, 54
 (8):3873 - 3889.
- [23] Yang L, Yan Q, Xiao C. Shape-controllable geometry completion for point cloud models [J]. The Visual Computer, 2017,33:385 - 398.
- [24] Yue X, Liu Z, Zhu J, et al. Coarse-fine point cloud registration based on local point-pair features and the iterative closest point algorithm [J]. Applied Intelligence, 2022, 52 (11):12569-12583.
- [25] Rusu R B, Blodow N, Beetz M. Fast point feature histograms(FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009:3212-3217.